
- •1 Типы электростанций и их характеристики
- •2 Структурные схемы получения электроэнергии на тэс кэс Гидроэлектростанции. Гидроэлектростанции
- •3 Короткое замыкание в электроустановках. Метод расчётов токов кз
- •4 Методы ограничения токов кз
- •5 Синхронные генераторы и компенсаторы. Турбогенераторы и Гидрогенераторы
- •Номинальные напряжения синхронных генераторов:
- •6 Трансформаторы и Автотрансформаторы
- •Шкала номинальных мощностей трансформаторов
- •7 Устройства регулирования напряжения на трансформаторах
- •Последовательность переключений устройства рпн
- •8 Условия параллельной работы трансформаторов и синхронных генераторов.
- •Параллельная работа синхронных генераторов
- •9 Конструкции токоведущих частей и шин электроустановок. Жёсткие гибкие и комплектные токопроводы.
- •10 Силовые кабели
- •11. Условия работы проводников и аппаратов при длительном протекании тока
- •12. Термическая стойкость проводников и аппаратов
- •13. Систематические и аварийные перегрузки трансформатора
- •15. Многообъемные и малообъемные масляные выключатели
- •16. Воздушные и элегазовые выключатели
- •Преимущество воздушных выключателей
- •Недостатки воздушных выключателей
- •Преимущества и недостатки элегазовых выключателей[править | править вики-текст] к преимуществам элегазовых выключателей можно отнести
- •К недостаткам элегазовых выключателей можно отнести сложность и дороговизна изготовления - при производстве необходимо соблюдать высокую чистоту и точность;
- •Разновидности вакуумных выключателей
- •18. Разъединители
- •19. Отделители и короткозамытели
- •20. Плавкий предохранитель
- •По рабочим характеристикам защищаемых цепей
- •Недостатки
- •Преимущества[
- •21. Выключатель нагрузки
- •Преимущества[
- •Недостатки
- •22. Приводы выключателей
- •23. Измерительные трансформаторы напряжения
- •Виды трансформаторов напряжения
- •24. Измерительный трансформа́тор то́ка
- •26. Токоограни́чивающий реа́ктор
- •27. Схемы распределительных устройств
- •29. Блочные схемы подстанций
- •30. Мостиковые схемы
- •33. Источники оперативного тока
- •34. Опн и разрядники
26. Токоограни́чивающий реа́ктор
Токоограни́чивающий реа́ктор — электрический аппарат, предназначенный для ограничения ударного тока короткого замыкания. Включается последовательно в цепь, ток которой нужно ограничивать и работает как индуктивное (реактивное) дополнительное сопротивление, уменьшающее ток и поддерживающее напряжение в сети при коротком замыкании, что увеличивает устойчивость генераторов и системы в целом.
Реактор — это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно.В большинстве конструкций токоограничивающие реакторы не имеют ферромагнитных сердечников. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3—4 %, что вполне допустимо. В случае короткого замыкания бо́льшая часть напряжения приходится на реактор.
Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.
Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы.
Токоограничивающие реакторы подразделяются:
по месту установки: наружного применения и внутреннего;
по напряжению: среднего (3 —35 кВ) и высокого (110 —500 кВ);
по конструктивному исполнению: на бетонные, сухие, масляные и броневые;
по расположению фаз: вертикальное, горизонтальное и ступенчатое;
по исполнению обмоток: одинарные и сдвоенные;
по функциональному назначению: фидерные, фидерные групповые и межсекционные.
27. Схемы распределительных устройств
При выборе схем распределительных устройств подстанции следует учитывать число присоединений (линий и трансформаторов), требования надежности электроснабжения потребителей и обеспечения транзита мощности через подстанцию в нормальном, ремонтных и послеаварийных режимах. Схемы подстанций должны формироваться таким образом, чтобы была возможность их поэтапного развития. При возникновении аварийных ситуаций должна быть возможность восстановления электроснабжения потребителей средствами автоматики. Число и вид коммутационных аппаратов выбираются таким образом, чтобы обеспечивалась возможность проведения поочередного ремонта отдельных элементов подстанции без отключения других присоединений.
К схемам подстанций предъявляются требования простоты, наглядности и экономичности. Эти требования могут быть достигнуты за счет унификации конструктивных решений подстанции, которая наилучшим образом реализуется в случае применения типовых схем электрических соединений распределительных устройств.
Рассмотрим наиболее характерные типовые схемы распределительных устройств, нашедшие широкое применение при проектировании подстанций с высшим напряжением 35–750 кВ.
28. Одиночная секционированная система шин
Одиночная секционированная система шин. Каждое присоединение, как и в предыдущей схеме, подключается к шинам через один выключатель и один шинный разъединитель. Допускается в отдельных случаях подключение одного трансформатора на секцию без выключателя. Связь секций через секционный выключатель (СВ) Q7 обеспечивает разделение схемы при повреждении одной из секций и не требует полного обесточивания подстанции при ремонте секции. Схема обеспечивает более надежную связь между отдельными узлами энергосистемы в нормальных, ремонтных и аварийных режимах. К недостаткам схемы следует отнести необходимость отключения всех присоединений данной секции при выводе ее в ремонт или при ее повреждении, а также возможность полного погашения подстанции при повреждении Q7, являющегося общим элементом для обеих секций.