
- •1 Типы электростанций и их характеристики
- •2 Структурные схемы получения электроэнергии на тэс кэс Гидроэлектростанции. Гидроэлектростанции
- •3 Короткое замыкание в электроустановках. Метод расчётов токов кз
- •4 Методы ограничения токов кз
- •5 Синхронные генераторы и компенсаторы. Турбогенераторы и Гидрогенераторы
- •Номинальные напряжения синхронных генераторов:
- •6 Трансформаторы и Автотрансформаторы
- •Шкала номинальных мощностей трансформаторов
- •7 Устройства регулирования напряжения на трансформаторах
- •Последовательность переключений устройства рпн
- •8 Условия параллельной работы трансформаторов и синхронных генераторов.
- •Параллельная работа синхронных генераторов
- •9 Конструкции токоведущих частей и шин электроустановок. Жёсткие гибкие и комплектные токопроводы.
- •10 Силовые кабели
- •11. Условия работы проводников и аппаратов при длительном протекании тока
- •12. Термическая стойкость проводников и аппаратов
- •13. Систематические и аварийные перегрузки трансформатора
- •15. Многообъемные и малообъемные масляные выключатели
- •16. Воздушные и элегазовые выключатели
- •Преимущество воздушных выключателей
- •Недостатки воздушных выключателей
- •Преимущества и недостатки элегазовых выключателей[править | править вики-текст] к преимуществам элегазовых выключателей можно отнести
- •К недостаткам элегазовых выключателей можно отнести сложность и дороговизна изготовления - при производстве необходимо соблюдать высокую чистоту и точность;
- •Разновидности вакуумных выключателей
- •18. Разъединители
- •19. Отделители и короткозамытели
- •20. Плавкий предохранитель
- •По рабочим характеристикам защищаемых цепей
- •Недостатки
- •Преимущества[
- •21. Выключатель нагрузки
- •Преимущества[
- •Недостатки
- •22. Приводы выключателей
- •23. Измерительные трансформаторы напряжения
- •Виды трансформаторов напряжения
- •24. Измерительный трансформа́тор то́ка
- •26. Токоограни́чивающий реа́ктор
- •27. Схемы распределительных устройств
- •29. Блочные схемы подстанций
- •30. Мостиковые схемы
- •33. Источники оперативного тока
- •34. Опн и разрядники
20. Плавкий предохранитель
Плавкий предохранитель — компонент силовой электроники одноразового действия, выполняющий защитную функцию.
Все плавкие вставки, вне зависимости от конструктивных особенностей, включают в себя два основных элемента:
плавкий элемент - токопроводящий элемент из металла, сплава нескольких металлов или специально подобранных слоёв нескольких металлов;
корпус - механизм или систему крепления плавкого элемента к контактам, обеспечивающим включение плавкого предохранителя в целом, как устройства, в электрическую цепь.
Корпуса плавких вставок обычно изготавливаются из высокопрочных сортов специальной керамики (фарфор, стеатит или корундо-муллитовая керамика). Для корпусов плавких вставок с малыми номинальными токами используются специальные стекла. Корпус плавкой вставки обычно выполняет роль базовой детали, на которой укреплен плавкий элемент с контактами плавкой вставки, указатель срабатывания, свободные контакты, устройства для оперирования плавкой вставкой и табличка с номинальными данными. Одновременно корпус выполняет функции камеры гашения электрической дуги.
По рабочим характеристикам защищаемых цепей
Быстродействующие (полупроводниковые)
Низковольтные
Предназначены для защиты цепей переменного тока с напряжением до 1 кВ при перегрузках и коротких замыканиях.
На среднее напряжение
Используются в цепях защиты линий электропередач, трансформаторов, двигателей и конденсаторных батарей от перегрузок и коротких замыканий до напряжений порядка 30 кВ.
На высокое напряжение
Используются в основном в промышленных целях для работы с напряжениями от нескольких десятков до сотен кВ.
Недостатки
Возможность использования только один раз.
Большим недостатком плавких предохранителей является конструкция, дающая возможность шунтирования, то есть использования «жучков», приводящих к пожарам.
Возможность необоснованной замены на предохранитель номиналом выше.
Возможный перекос фаз в трёхфазных электроцепях при больших токах.
В цепях трёхфазных электродвигателей при сгорании одного предохранителя инициируется пропадание одной фазы, что может привести к выходу из строя электродвигателя (рекомендуется использовать реле контроля фаз).
Преимущества[
В асимметричных трёхфазных цепях при аварии на одной фазе, питание пропадёт только на одной фазе, а остальные две фазы продолжат дальше снабжать нагрузку (не рекомендуется такое практиковать при больших токах, так как это может привести к перекосу фаз)
Из-за медленной скорости срабатывания, плавкие предохранители можно использовать для селективности.
Так же селективность самих плавких предохранителей относительно друг друга (при последовательном соединении) имеют более простой расчёт селективности, нежели у автоматического предохранителя: номинальные токи последовательно соединённых предохранителей должны отличаться друг от друга в 1,6 раз или больше.
Из-за более простой конструкции чем у автомата защиты, почти исключена возможность т. н. «поломки механизма» — в случае аварийной ситуации предохранитель полноценно обесточит цепь.
После замены плавкой вставки предохранителя в цепи получается защита с характеристиками, заявленными производителем в отличие от случая с использования автоматического выключателя с подгорающими контактами.
Основное условие это то, чтобы номинальный ток плавкой вставки был выше номинального тока защищаемой цепи и напряжение предохранителя совпадало с напряжением сети.