
- •0Лекция № 1.
- •1.Статическая биохимия (изучает структуру веществ ) - биоорганическая химия.
- •2.Значение биохимии для диагностики заболеваний.
- •1 .Альфа спираль ( л.Поллинг) - виток составляет от 3 до 6 ак. Терминатором спирали является ак-пролин.
- •2.Бетта складчатый слой.
- •3.Петли полипептидной цепи (соединительные петли).
- •1.Физико-химические свойства белков. Их использование для разделения белков.
- •2.Принципы классификации белков.
- •3.Характеристика простых белков.
- •1.Молекулярная масса белков определяет многие свойства белков: седиментация, диффузия, плотность белковых растворов, коллоидные свойства белков и др. Характеристики.
- •2.Способность белков связываться с лигандами,
- •3.Электрохимические свойства белков.
- •1. Концевыми соон и nh2 группами.
- •2.Боковыми группами:
- •1.Ионообменная хроматография.
- •2.Разделение белков на основании величины заряда - электрофорез белков. С помощью электрофореза в сыворотке крови выделяют как минимум 5 фракций: альбумины, альфа, альфа-2, гамма, бета - глобулины.
- •4.Коллоидные свойства белков.
- •5. Гидратация белков - способность белков связывать воду. Она осуществляется за счёт:
- •1. Повышают скорость реакции.
- •1.Витаминные.
- •4.Специфичность действия ферментов. В основе специфичности действия ферментов лежит конформационное соответствие его активного центра молекуле субстрата. Различают следующие виды специфичности:
- •1.Ингибиторы ферментативной активности.
- •1. Класификация ферментов.
- •1.Энзимопатология (патологическое состояние, связанное с полным отсутствием фермента в организме).
- •1.Поступление веществ из внешней среды посредством питания и дыхания.
- •1 .Катаболическая - распад ацетила.
- •1.Теория «активации» кислорода академика баха. Ведущей ролью в процессе биологического окисления он представлял образование пероксидов.
- •1 .Механизм окислительного фосфорилирования.
- •1. Целостность мембраны - непроницаемость её для протонов.
- •1.Связывание кислорода с активным центром фермента.
- •2.Восстановление кислорода и перенос его на субстрат.
- •1.Диоксигеназы - ферменты, включающие в субстрат молекулу кислорода.
- •2. Вторичные радикалы (он, липидные радикалы – l,, lo,, loo,) Их образование происходит с участием железа (11). Это патологические продукты.
- •3. Третичные радикалы (антиоксиданты) - образуются под влиянием вторичных радикалов.
- •1 .Фермент - супероксиддисмутаза (сод).
- •2.Она раздражает слизистую оболочку жкт, усиливая секрецию желёз.
- •3.Усиливает сокращение кишечника,
- •4.В толстом кишечнике под действием ферментов условно-патогенной микрофлоры клетчатка подвергается брожению с образованием глюкозы, лактозы и газообразных веществ.
- •1. Основной фосфоролитический путь
- •2.Неосновной амилолитический.
- •1.Болезнь ферса - фосфорилаза печени.
- •3 Реакции гликолиза являются необратимыми:
- •1.Гексокиназная.
- •2.Фосфофруктокиназная.
- •3.Пируваткиназная.
- •1. Глицеральдегид-3-фосфат
- •1. Транскетолазные реакции:
- •1.Липиды, их классификация и биологическая роль.
- •2.Превращение липидов в органах пищеварения.
- •1.Структурными липидами.
- •2.Резервными липидами.
- •3.Свободными липидами. — хиломикроны,
- •1 .Структурная. Липиды являются обязательным структурным компонентом биологических мембран клеток.
- •1. Эмульгируют пищевые жиры.
- •2. Активируют липолитические ферменты.
- •3. Выполняют роль переносчиков трудно растворимых в воде продуктов гидролиза жира и жирорастворимых витаминов a, d, е, к.
- •1.Транспортные липопротеины крови. Состав и биологическая роль. 2.Простагландины, простациклины, тромбоксаны, лейкотриены. Механизм их образования и биологическая роль.
- •3.Окисление глицерина и вжк в тканях.
- •1. Хиломикроны. Образуются в стенке кишечника и имеют самый крупный размер частиц.
- •2. Лпонп. Синтезируются в стенке кишечника и печени.
- •3. Лпнп. Образуются в эндотелии капилляров из лпонп.
- •4. Лпвп. Образуются в стенке кишечника и печени.
- •1.Простагландины:
- •1 . Альфа -глицерофосфата
- •1.Биосинтез вжк в тканях, химизм реакций, биологическая роль. 2.Холестерин, биологическая роль, биосинтез, окисление. 3.Патология липидного обмена.
- •1.Наличие атф, со2, н2о, надф*н2, поступающий из гексозомонофосфатного пути превращения глюкозы.
- •2.Наличие специальных белков-переносчиков (hs -апб). 3.Наличие специальных ферментов синтеза.
- •1.Структурная. Свободный холестерин является, обязательным структурным компонентом мембран клеток.
- •2.На этапе пищеварения.
- •1. Белковое питание.
- •2. Превращение белков в органах пищеварения.
- •3. Гниение белков. Образование токсических продуктов и механизм их обезвреживания.
- •1 .На этапе поступления жиров с пищей:
- •2.На этапе пищеварения.
- •1. Белковое питание.
- •1.Реакция декарбоксилированая.
- •1. Источники аминокислот в клетке и пути их использования.
- •3.Реакции дезаминирования - разрушение nн2-группы с выделением аммиака. В организме возможны следующие виды дезаминирования.
- •1. Образование амидов
- •2. Восстановительное аминирование.
- •3. Образование солей аммония.
- •4. Синтез мочевины - основной путь обезвреживания аммиака - орнитиновый цикл.
- •1.Особенности метаболизма нуклеопротеинов.
- •2.Бета -аминоизобутират.
- •1.Азот промежуточных продуктов (пептиды, ао, ак, креатин, индол, скатол и т.Д.)
- •2.Азот конечных продуктов (мочевина, мочевая к-та, индикан, креатинин)—
- •1.Продукционная - повышение образования компонентов остаточного азота, главным образом
- •2.Ретенционная - задержка азотистых шлаков из-за нарушения выделительной функции почек.
- •1. Нарушение на этапе поступления белков. В норме в организм должно поступать 80 - юОгр белков. Обязательно поступление всех незаменимых ак.
- •2. Нарушение на этапе пищеварения:
- •3. Нарушение межуточного обмена - нарушение обмена аминокислот в тканях.
- •1. Матрица - нити днк. Расщепление нити называется репликативная вилка. Она
- •2. Репарация днк.
- •3. Транскрипция гена.
- •1. Матрица - 1 нить днк. Образуется транскрипционный глазок.
- •1.Рекогниция (распознавание) - узнавание между аминокислотами и их транспортной
- •3. Инициация - начало процесса трансляции.
- •4. Элонгация (продолжение) протекает циклически в виде последовательной смены трёх фаз:
- •5. Терминация (прекращение).
- •6. Броцессинг белка (созревание) совокупность химических модификаций
- •1. Регуляция происходит только на уровне транскрипции. Первичные транскрипты генов у них транслируются до завершения транскрипции.
- •3. Регуляция биосинтеза белков у прокариот протекает альтернативно путём репрессии и индукции.
- •1. Выделение днк из биологического материала.
- •2. Амплификация - репликация на органическом участке молекулы днк. Производится за счёт работы ферментов и смены температурных режимов.
- •3. Детекция продуктов pcr (копий заданного участка) Схема pcr:
- •1. Изучаемая днк,
- •1. Структурные гены
- •2. Регуляторные элементы
- •1. Фенотипическое различие между клетками,
- •2. Индивидуальные различия между организмами одного вида. Каждый человек отличается от другого человека на 0,1% генома.
- •3. Широкое разнообразие белков. На основе 35000 генов синтезируются около 5000000 белков. В настоящее время нельзя сказать точно, что изучать важнее - геном или белковый состав организма.
- •1. Лежит в основе развития предрасположенности к заболеваниям (атеросклероз)
- •1.Внутриклеточное и межклеточное согласование клеточных процессов,
- •1.Малый период жизни (динамичность, оперативность регуляции).
- •1. Фактор расширения сосудов;
- •1. Передняя
- •1. Стимуляция синтеза белка: (через ифр I.)_
- •2. Влияние на углеводный обмен:
- •3. Влияние на минеральный обмен (через ифр1) - задержка кальция, фосфора, магния в организме,
- •4. Влияние на липидный обмен (не через ифр 1):
- •1. Альфа -меланоцитстимулирующий гормон (мсг) (промежуточная доля).
- •1. Гормоны щитовидной и паращитовидной желез.
- •1. Повышение поглощения тканями кислорода за исключением мозга, ретикуло-эпителиальной системы и гонад.
- •1. Углеводный обмен:
- •2. Липидный обмен:
- •1. Выделяют группу энзимовитаминов - это предшественники коэнзимов или простетических групп ферментов:
- •4. Участвуют в синтезе медиаторов (вит.С - серотонин), стероидных гормонов. Авитаминоз - это патологическое состояние, которое развивается в результате отсутствия
- •1. Он принимает участие в дифференцировке эпителиальных тканей, а также участвует в регуляции роста и дифференцировке эмбриональных тканей. В эмбриональных тканях
- •1. Нарушение дифференцировки эпителия - кератинизация.
- •2. Нарушение восприятия света и сумеречного зрения - гемеролапия («куриная слепота»). При хроническом гиповитаминозе вит.А развивается дистрофия и необратимая дегенерация палочек.
- •1 Витамин к и витамин е.
- •2 Водорастворимые витамины.
- •1. Является кофактором карбоксилирования глу в протромбине, т.Е. Необходим для его поевпашения в тромбин.
- •2. Участвует в превращении проконвертина в конвертин
- •1. Участие в окислительно-восстановительных реакциях:
- •2. Синтез кортикостероидов
- •1. Входит в состав тдф: тиамин(атф) ® тдф
- •2.Участвует в передаче нервного импульса.
- •1. Участвует в окислительно-восстановительных реакциях, т.К. Входит в состав фермента фмн
- •I. Метилирование в12
- •1. Является ко-ферментом карбоксилаз пвк, ацетил -коа, пропионил-коа.
- •2. Участвует в реакциях синтеза жирных кислот и стерина.
- •1. Входит в состав ко-фермента а, следовательно, участвует в синтезе ацетил-коа, различных ацил-коа, образующихся в результате следующих реакций:
- •2. Участвует в синтезе более 80 различных ферментов.
- •1. Участвует в образовании фосфотидилхолина.
- •1. Прямо воздействующие:
- •2. Структуры аналогичные витаминам:
- •1. Снижение затрат энергии в современных условиях, следовательно, необходимость снижение
- •1. Для крови: нб - 75%, кб - 25%. Суммарно этот показатель обозначается, как общий билирубин крови, который в норме для взрослого человека составляет 8 -20ммоль/л.
- •2. Печеночная желтуха (токсические и вирусные и другие гепатиты).
- •3. Подпеченочная желтуха (механическая).
- •4. Физиологическая желтуха новорождёных.
- •1. Транспортирует ионы меди, связывает и удерживает их в кровеносном русле
- •3. Обладает противовоспалительным действием
- •4. Является антиоксидантом, обезвреживает активные формы кислорода и пол.
- •IgD. Функция неизвестна.
- •1. Метаболиты: аминокислоты (25%), креатин (5%), полипептиды и нуклеотиды (3,5%)
- •2. Конечные азотистые продукты: мочевина(50%), мочевая кислота (4%), креатинин (2,5%), индикан и аммиак.
- •1.Экскреторная функция - это выделение мочевины, мочевой кислоты, креатина, лекарств, токсинов, избытка воды, микроэлементов, электролитов. Состоит из трёх фаз:
- •2.Регуляторная и гомеостатическая.
- •3.Секреторная функция:
- •1.Мочевина (20 - 35г/сутки). Повышается при повышенном распаде белков при нормальной функции печени, высокобелковое питание. Понижается при нарушении синтеза в печени, нарушении функции почек.
- •3. Креатинин (0,8 - 2,3г/сутки). Повышается при усиленном распаде компонентов мышечной ткани (травмы мышц), увеличение употребления мясной пищи. Понижается при угнетении фильтрации почками.
- •4. Белок (не более зОмг/л). Качественными реакциями не обнаруживается. Протеинурия наблюдается при гематурии, нарушении функции почек.
- •1. Химический состав нервной ткани.
- •1. Глу связывает аммиак
3 Реакции гликолиза являются необратимыми:
1.Гексокиназная.
2.Фосфофруктокиназная.
3.Пируваткиназная.
Энергетический эффект глюкозы и глюкозного остатка гликогена:
АТФ = (2*2)-2 = 2 глюкоза
АТФ = (2*2)-1 =3 гликоген
Биологическая роль АНАЭРОБНОГО ГЛИКОЛИЗА энергетическая. АНАЭРОБНЫЙ ГЛИКОЛИЗ является единственным процессом продуцирующим энергию в форме АТФ в клетке в бес кислородных условиях в кризисных ситуациях. А в эритроцитах ГЛИКОЛИЗ является единственным процессом поддерживающим биоэнергетику, для сохранения их функции и целостности.
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ - это аэробное превращение глюкозы в тканях. При поступлении кислорода в клетки происходит подавление анаэробного ГЛИКОЛИЗА. При этом понижается потребление глюкозы, блокируется образование ЛАКТАТА. Эффект торможения анаэробного гликолиза дыханием получил название эффекта ПАСТСРА. Процесс окисления начинается в цитоплазме до стадии образования ПИРУВАТА. Затем ПВК поступает в МИТОХОНДРИИ, где в матрице подвергается ОКИСЛИТЕЛЬНОМУ ДЕКАРБОКСИЛИРОВАНИЮ. Образующийся АЦЕТИЛ-КОА поступает для дальнейшего окисления в основной метаболический ЦТК КРЕБСА. С участием ферментов ЦТК и сопряженных с ним ферментов дыхательной цепи происходит образование конечных продуктов (СО2 иН2О) и выделяется 38 АТФ, а при окислении глюкозного остатка гликогена - 39 АТФ. Н2О образуется на этапе превращения:
1. Глицеральдегид-3-фосфат
2. 2-ФОСФОГЛИЦЕРИНОВАЯ К-ТА
3. ПИРУВАТА
4. Альфа- КЕТОГЛУТАРОВАЯ К-ТА
5. СУКЦИНАТ
4. ИЗОЦИТРАТ
7. МАЛАТ
СО2 образуется на этапе превращения:
1. ПИРУВAT
2. ОКСАЛОСУКЦИНАТ
3. Альфа - КЕТОГЛУТАРОВАЯ К-ТА. АТФ образуется:
А. За счёт реакций субстратного ФОСФОРИЛИРОВАНИЯ на этапе превращения:
1. 1,3-ДИФОСФОГЛИЦЕРИНОВАЯ К-ТА
2. 2-ФОСФОЕНОЛПИРУВАТ
3. СУКЦИНИЛ-КОА
В. За счёт реакций ОКИСЛИТЕЛЬНОГО ФОСФОРИЛИРОВАНИЯ на этапе превращения:
1. ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТ
2. ПИРУВАТ
3. ИЗОЦИТРАТ
4. альфа -КГК
5. СУКЦИНАТ
6. МАЛАТ.
Энергетический эффект окисления глюкозы и глюкозного остатка гликогена в аэробных условиях:
АТФ = 2*(3+1 +1 +3+12) - 2 = 38 глюкоза
АТФ = 2*(3+1+ 1 +3+12) - 1 =39 гликоген
Лекция № 12.
Обмен углеводов (продолжение).
1.ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ УГЛЕВОДОВ В ТКАНЯХ. ХИМИЗМ РЕАКЦИЙ, БИОЛОГИЧЕСКАЯ РОЛЬ.
2.ОСНОВНЫЕ ИСТОЧНИКИ ГЛЮКОЗЫ ДЛЯ ОРГАНИЗМА ЧЕЛОВЕКА, ГЛЮКОНЕОГЕНЕЗ И ЕГО БИОЛОГИЧЕСКАЯ РОЛЬ.
3.ПАТОЛОГИЯ УГЛЕВОДНОГО ОБМЕНА.
ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ (ПЕНТОЗНЫЙ, АПОТОМИЧЕСКИЙ) протекает в цитоплазме клетки и представлен 2 ветвями: окислительной и неокислительной. Особенно активно этот путь протекает в тех органах и тканях, в которых активно синтезируются жиры (печень, почки, жировая и эмбриональная ткань, молочные железы). Биологическая роль этого пути окисления глюкозы связывается прежде всего с производством двух веществ:
1.НАДФ*Н2, который в отличии от НАДН2 не используется вдыхательной цепи МИТОХОНДРИЙ, а поступает клетке для реакций синтеза и восстановления веществ.
2.РИБОЗО-5-ФОСФАТА и др. ПЕНТОЗ, которые используются в клетке для синтеза важнейших биологических молекул: ДНК, РНК, НТФ (АТФ, ГТФ, ЦТФ, ТТФ),Н5КОА, НАД, ФАД).
Следовательно, основная биологическая роль - АНАБОЛИЧЕСКАЯ. Неокислительная стадия ПЕНТОЗНОГО ПУТИ окисления глюкозы даёт субстраты, которые в анаэробных условиях поддерживают ГЛИКОЛИЗ (ФРУКТОЗО-6-ФОСФАТ, ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТ). Т.о. поддерживается биоэнергетика клетки в ГИПОКСИЧЕСКИХ ситуациях. Окислительная стадия представляет 5 реакций и предусматривает образование ПЕНТОЗ. ГЕКСОЗОМОНОФОСФАТНЫЙ путь отличается от ГЕКСОЗОДИФОСФАТНОГО пути с этапа превращения глюкозо-6-фосфата.
При определенных условиях на этом заканчивается окислительная стадия. Между ПЕНТОЗАМИ устанавливается подвижное равновесие.
Неокислительная стадия ГЕКСОЗОМОНОФОСФАТНОГО пути представлена двумя ТРАНСКЕТЛАЗНЫМИ реакциями и одной ТРАНСАЛЬДОЛАЗНОЙ. Особенно активно эти реакции протекают в анаэробных условиях. В результате этих реакций образуются субстраты для ГЛИКОЛИЗА, а также вещества характерные для ПЕНТОЗНОГО пути.