- •Оглавление.
- •Раздел I введение в технологию
- •Глава 1
- •Основные понятия и определения
- •§ 1.1. Предмет и содержание курса технологии отраслей промышленности
- •§ 1.2. Связь технологии с экономикой
- •§ 1.3. Понятие о технологических процессах: принципы их классификации
- •§ 1.4. Материальные и энергетические (тепловые) балансы
- •§ 1.5. Понятие о себестоимости и качестве промышленной продукции
- •§ 1.6. Общие положения по технике безопасности и охране труда на промышленных предприятиях
- •Глава 2 сырье, вода и энергия в промышленности § 2.1. Сырье в промышленности
- •Минеральное сырье
- •Растительное и животное сырье
- •Обогащение сырья
- •Комплексное использование минерально-сырьевых ресурсов
- •§ 2.2. Вода в промышленности
- •Промышленная водоподготовка
- •Промышленные сточные воды и их очистка
- •§ 2.3. Роль энергии в технологических процессах
- •Рациональное использование энергии
- •Глава 3 научно-техническая революция и научно-технический прогресс в промышленности § 3.1. Сущность, значение и основные направления научно-технического прогресса
- •§ 3.2. Нтр и технология
- •§ 3.3. Химизация народного хозяйства - важное направление нтп
- •§ 3.4. Нтп в области промышленных материалов
- •§ 3.5. Нтп в области орудий труда. Механизация, автоматизация и роботизация производства
- •§ 3.6. Применение вычислительной техники и асу в технологии
- •§ 3.7. Экологические проблемы нтп
- •Раздел II
- •§ 4.2. Основные закономерности, определения и классификация химических процессов
- •§ 4.3. Понятие о скорости и равновесии химических процессов
- •§ 4.4. Выход продукции в химико-технологических процессах
- •§ 4.5. Общие принципы интенсификации химико-технологических процессов
- •Перспективы развития и совершенствования химико-технологических процессов
- •Глава 5. Высокотемпературные процессы § 5.1. Сущность и значение высокотемпературных процессов
- •Влияние температуры на процессы, идущие в кинетической области
- •Влияние температуры на скорость процессов в диффузионной области
- •Условия, ограничивающие применение высоких температур
- •Типовое оборудование
- •§ 5.2. Тенденции совершенствования высокотемпературных процессов
- •§ 5.3. Высокотемпературные процессы в металлургии
- •Высокотемпературные процессы черных металлов в производстве
- •§ 5.4. Высокотемпературные процессы в производстве строительных материалов
- •§ 5.5. Высокотемпературная переработка топлива
- •Термические процессы переработки нефти и нефтяных фракций
- •§ 5.6. Высокотемпературные процессы в химической промышленности
- •Глава 6 электрохимические процессы § 6.1. Значение и сущность электрохимических процессов
- •Основные закономерности электрохимических процессов
- •§ 6.2. Электролиз водных растворов Электрохимическое производство хлора и едкого натра (каустической соды)
- •Электролиз воды
- •Электрохимическое производство продуктов окисления
- •§ 6.3. Гидроэлектрометаллургия
- •§ 6.4. Электролиз расплавленных сред
- •Свойства расплавленных электролитов
- •Глава 7 каталитические процессы § 7.1. Роль каталитических процессов, основные закономерности и определения
- •§ 7.2. Применение каталитических процессов в промышленности
- •§ 7.3. Производство аммиака
- •§ 7.4. Каталитические процессы нефтепереработки
- •Глава 8 процессы, идущие под повышенным или пониженным давлением § 8.1. Роль давления в технологии
- •§ 8.2. Давление как фактор интенсификации газообразных процессов
- •§ 8.3. Роль давления в жидкофазных и твердофазных процессах
- •Глава 9 биохимические процессы § 9.1. Основные понятия и определения
- •§ 9.2. Применение биотехнологических процессов в промышленности
- •Глава 10 фотохимические процессы
- •Глава 11 радиационно-химические процессы
- •Глава 12 плазмохимические процессы § 12.1. Общие понятия и определения
- •§ 12.2. Виды плазмохимических процессов
- •Глава 13 общие сведения о физических процессах химической технологии § 13.1. Значение физических процессов и их классификация
- •§ 13.2. Виды физических процессов Физико-механические процессы
- •Массообменные процессы
- •Раздел III
- •§ 14.2. Кислоты, щелочи Неорганические кислоты
- •§ 14.3. Минеральные удобрения
- •§ 14.4. Полимеры Общие сведения о полимерах, их строении, свойствах и способах получения
- •Пластмассы, их свойства, значение и применение в народном хозяйстве
- •Химические волокна и их применение в народном хозяйстве
- •Каучуки и резина
- •§ 14.5. Нефтепродукты
- •Глава 15 строительные материалы § 15.1. Общие сведения
- •§ 15.2. Основные виды строительных материалов Природные (естественные) материалы, применяемые в строительстве
- •Керамические материалы
- •Огнеупорные материалы
- •Минеральные вяжущие
- •Бетон, железобетон и строительные растворы
- •Силикатные (автоклавные) материалы
- •Асбестоцементные материалы
- •Стекло и изделия на его основе
- •Теплоизоляционные материалы
- •Глава 16 металлы и сплавы § 16.1. Общие сведения
- •§ 16.2. Методы определения качества металла (сплава)
- •§ 16.3. Термическая и химико-термическая обработка
- •§ 16.4. Черные металлы и сплавы
- •Материалы со специальными свойствами (стали, сплавы)
- •Магнитные материалы
- •Инструментальные материалы
- •§ 16.5. Цветные металлы и их сплавы
- •§ 16.6. Коррозия металлов
- •Классификация коррозионных процессов
- •Электрохимическая коррозия металлов
- •§ 16.7. Защита металлов от коррозии Защита металлов от химической коррозии
- •Экономия на 1 т листа
- •Защита металлов от электрохимической коррозии
- •Технико-экономические показатели и выбор методов защиты
- •Раздел IV
- •Типы производств
- •Типизация технологических процессов
- •Технологичность конструкций изделий
- •Качество изделий
- •Понятие о точности обработки
- •Основные методы и средства контроля качества изделий
- •Шероховатость поверхности
- •Выбор заготовок
- •§ 17.2. Экономическая оценка технологического процесса
- •Глава 18
- •Литье в песчано-глинистые формы
- •Специальные способы литья
- •§ 18.2. Основы технологии производства заготовок методами пластической деформации
- •Формообразование заготовок, изделий из пластмасс и резины методами пластической деформации
- •Формообразование деталей методами порошковой металлургии
- •§ 18.3. Изготовление неразъемных соединений Понятие о неразъемных соединениях. Виды неразъемных соединений
- •Сущность процессов сварки материалов и их классификация
- •Сварка плавлением
- •Огневая резка материалов
- •Сварка давлением
- •Контроль качества сварных соединений
- •Клеевая технология
- •§ 18.4. Обработка конструкционных материалов резанием
- •Обработка на станках-автоматах и полуавтоматах
- •Чистовая обработка наружных поверхностей тел вращения
- •Обработка внутренних поверхностей тел вращения.
- •Обработка плоских поверхностей
- •Обработка фасонных поверхностей
- •Методы изготовления деталей зубчатых зацеплений
- •Обработка резанием неметаллических материалов
- •Обработка заготовок на агрегатных станках
- •§ 18.5. Электрофизические методы обработки
- •Применение ультразвука в промышленности
- •Плазменная обработка материалов
- •Лазерная обработка
- •Глава 19 основные технологические процессы электроники и микроэлектроники § 19.1. Технология изготовления интегральных микросхем
- •Фотолитография в микроэлектронике
- •Нанесение тонких пленок в вакууме
- •Осаждение из газовой фазы
- •§ 19.2. Технология изготовления печатных плат
- •Технологические процессы изготовления пп
- •Субстрактивные методы изготовления печатных плат
- •Технология изготовления многослойных печатных плат
- •Аддитивные методы изготовления печатных плат
- •Печатные платы с многопроводным монтажом
- •Глава 20 технология сборочных процессов § 20.1. Понятие о технологическом процессе сборки и его организационных формах
- •§ 20.2. Контроль и испытание готовых изделий
- •Глава 21 основы технологии строительного производства § 21.1. Роль капитального строительства в развитии народного хозяйства ссср
- •§ 21.2. Строительные работы
- •§ 21.3. Основные направления совершенствования строительства
- •Глава 22 оптимизация технологических процессов § 22.1. Общая постановка задач оптимизации технологических процессов
- •§ 22.2. Методы оптимизации технологических процессов
- •Регрессионный и корреляционный методы анализа при оптимизации технологических процессов
- •Методы планирования эксперимента для оптимизации технологических процессов
§ 8.3. Роль давления в жидкофазных и твердофазных процессах
Для процессов, протекающих вжидкой фазе, применение повышенного давления эффективно лишь при его значениях более 200 МПа. Примером может служить жидкофазная гидратация этилена при получении этилового спирта (С2Н4 + Н2ОС2Н5ОН) либо его полимеризация в производстве полиэтилена высокого давления. В последнем случае уже при давлении 200 МПа и температуре 200 °С плотность газообразного этилена очень близка к плотности жидкости. В существующих технологических процессах производства полиэтилена давление достигает 300 МПа. Подобное повышение давления благоприятствует образованию полиэтилена большей плотности, уменьшает разветвленность и количество непредельных групп в структуре макромолекул.
Однако при таком давлении влияние температуры и агрегатного состояния проявляется в очень противоречивой форме. С одной стороны, повышение температуры ускоряет распад инициатора и увеличивает скорость полимеризации, с другой — с повышением температуры уменьшается молекулярная масса и плотность полимера, в результате качество полиэтилена высокого давления как одного из лучших диэлектриков для высокочастотной техники несколько ухудшается. Фазовое состояние реакционной смеси также влияет на эффективность процесса. В гомофазной системе Ж - Ж преобладают процессы роста молекулярной цепи с образованием небольшого числа коротких боковых ответвлений. В гетерофазной системе Г — Ж — Т образуется большое число молекул с длинными боковыми ответвлениями, сильно ухудшающими качество полимера. По этой причине полимеризацию этилена под высоким давлением проводят в гомофазной системе Ж — Ж, а подготовительные и завершающие операции — в гетерофазных системах типа Г-Ж либо Ж - Т.
Другая область применения высокого давления — жидкофазная пропитка пористых материалов и изделий. Применение для этой цели высокого гидростатического давления (3000 МПа) в многих отраслях промышленности сокращает продолжительность пропитки с нескольких суток до 10-30 с. В ряде случаев удается совмещением нескольких технологических операций одновременно с пропиткой производить уплотнение и формообразование (профилирование). Например, древесину железнодорожных шпал, мебельных изделий, шахтного крепежного леса обрабатывать антисептиками, консервантами, синтетическими смолами или лаками. Это исключает длительную и энергоемкую сушку, позволяет использовать плохосмазываемые и даже высоковязкие жидкости без подогрева. Ориентировочный годовой экономический эффект от использования этого способа только в лесообрабатывающей промышленности оценивается в 10 млн. руб. В настоящее время пропиткой пористых материалов и изделий жидкостью под высоким гидростатическим давлением осуществляют консервирование и гидролиз древесины, изготовление древесных пластиков, изготовление высоковольтных пленочных конденсаторов, антифрикционной металлокерамики и т. д.
Для процессов, протекающих в твердой фазе, ввиду незначительной сжимаемости твердых тел эффективными являются лишь сверхвысокие давления ~ 10000 — 250000 МПа. При таких больших сжатиях происходит перестройка электронных оболочек атомов, деформация молекул и сдвиг фазов'ого равновесия. Как правило, это заканчивается образованием новых химических связей, которые обладают большой прочностью. Подобный принцип воздействия на вещество положен в основу создания новых материалов с необходимыми свойствами. Сейчас сверхтвердые материалы типа эльбе-ра, боразона и синтетических алмазов получают при температурах 1600 — 2400 °С целенаправленными полиморфными превращениями в кристаллической структуре. Так, графит в результате перегруппировки атомов углерода в кристаллической решетке переходит в синтетический алмаз. Гексагональная структура нитрида бора трансформируется до кубической, что придает полученным кристаллам твердость, превышающую твердость алмаза.
Техника получения сверхвысоких давлений уже сейчас обеспечивает возможность сжатия материалов до 106 — 108 МПа. Это открывает большие возможности получения совершенно новых сплавов большой твердости, прочности и жесткости либо создания неметаллических материалов с металлическими свойствами. Например, серый чугун после его обработки высоким давлением напоминает по механическим характеристикам высокосортную сталь, а неметаллы (сера, иод) и металлоиды (например, селен) приобретают ярко выраженные металлические свойства.
Таким образом, сверхвысокие давления значительно расширяют диапазон возможностей в создании новых материалов и прогрессивной технологии их переработки. В будущем обработка высоким давлением станет такой же обычной, как и современные высокотемпературные процессы.