- •Оглавление.
 - •Раздел I введение в технологию
 - •Глава 1
 - •Основные понятия и определения
 - •§ 1.1. Предмет и содержание курса технологии отраслей промышленности
 - •§ 1.2. Связь технологии с экономикой
 - •§ 1.3. Понятие о технологических процессах: принципы их классификации
 - •§ 1.4. Материальные и энергетические (тепловые) балансы
 - •§ 1.5. Понятие о себестоимости и качестве промышленной продукции
 - •§ 1.6. Общие положения по технике безопасности и охране труда на промышленных предприятиях
 - •Глава 2 сырье, вода и энергия в промышленности § 2.1. Сырье в промышленности
 - •Минеральное сырье
 - •Растительное и животное сырье
 - •Обогащение сырья
 - •Комплексное использование минерально-сырьевых ресурсов
 - •§ 2.2. Вода в промышленности
 - •Промышленная водоподготовка
 - •Промышленные сточные воды и их очистка
 - •§ 2.3. Роль энергии в технологических процессах
 - •Рациональное использование энергии
 - •Глава 3 научно-техническая революция и научно-технический прогресс в промышленности § 3.1. Сущность, значение и основные направления научно-технического прогресса
 - •§ 3.2. Нтр и технология
 - •§ 3.3. Химизация народного хозяйства - важное направление нтп
 - •§ 3.4. Нтп в области промышленных материалов
 - •§ 3.5. Нтп в области орудий труда. Механизация, автоматизация и роботизация производства
 - •§ 3.6. Применение вычислительной техники и асу в технологии
 - •§ 3.7. Экологические проблемы нтп
 - •Раздел II
 - •§ 4.2. Основные закономерности, определения и классификация химических процессов
 - •§ 4.3. Понятие о скорости и равновесии химических процессов
 - •§ 4.4. Выход продукции в химико-технологических процессах
 - •§ 4.5. Общие принципы интенсификации химико-технологических процессов
 - •Перспективы развития и совершенствования химико-технологических процессов
 - •Глава 5. Высокотемпературные процессы § 5.1. Сущность и значение высокотемпературных процессов
 - •Влияние температуры на процессы, идущие в кинетической области
 - •Влияние температуры на скорость процессов в диффузионной области
 - •Условия, ограничивающие применение высоких температур
 - •Типовое оборудование
 - •§ 5.2. Тенденции совершенствования высокотемпературных процессов
 - •§ 5.3. Высокотемпературные процессы в металлургии
 - •Высокотемпературные процессы черных металлов в производстве
 - •§ 5.4. Высокотемпературные процессы в производстве строительных материалов
 - •§ 5.5. Высокотемпературная переработка топлива
 - •Термические процессы переработки нефти и нефтяных фракций
 - •§ 5.6. Высокотемпературные процессы в химической промышленности
 - •Глава 6 электрохимические процессы § 6.1. Значение и сущность электрохимических процессов
 - •Основные закономерности электрохимических процессов
 - •§ 6.2. Электролиз водных растворов Электрохимическое производство хлора и едкого натра (каустической соды)
 - •Электролиз воды
 - •Электрохимическое производство продуктов окисления
 - •§ 6.3. Гидроэлектрометаллургия
 - •§ 6.4. Электролиз расплавленных сред
 - •Свойства расплавленных электролитов
 - •Глава 7 каталитические процессы § 7.1. Роль каталитических процессов, основные закономерности и определения
 - •§ 7.2. Применение каталитических процессов в промышленности
 - •§ 7.3. Производство аммиака
 - •§ 7.4. Каталитические процессы нефтепереработки
 - •Глава 8 процессы, идущие под повышенным или пониженным давлением § 8.1. Роль давления в технологии
 - •§ 8.2. Давление как фактор интенсификации газообразных процессов
 - •§ 8.3. Роль давления в жидкофазных и твердофазных процессах
 - •Глава 9 биохимические процессы § 9.1. Основные понятия и определения
 - •§ 9.2. Применение биотехнологических процессов в промышленности
 - •Глава 10 фотохимические процессы
 - •Глава 11 радиационно-химические процессы
 - •Глава 12 плазмохимические процессы § 12.1. Общие понятия и определения
 - •§ 12.2. Виды плазмохимических процессов
 - •Глава 13 общие сведения о физических процессах химической технологии § 13.1. Значение физических процессов и их классификация
 - •§ 13.2. Виды физических процессов Физико-механические процессы
 - •Массообменные процессы
 - •Раздел III
 - •§ 14.2. Кислоты, щелочи Неорганические кислоты
 - •§ 14.3. Минеральные удобрения
 - •§ 14.4. Полимеры Общие сведения о полимерах, их строении, свойствах и способах получения
 - •Пластмассы, их свойства, значение и применение в народном хозяйстве
 - •Химические волокна и их применение в народном хозяйстве
 - •Каучуки и резина
 - •§ 14.5. Нефтепродукты
 - •Глава 15 строительные материалы § 15.1. Общие сведения
 - •§ 15.2. Основные виды строительных материалов Природные (естественные) материалы, применяемые в строительстве
 - •Керамические материалы
 - •Огнеупорные материалы
 - •Минеральные вяжущие
 - •Бетон, железобетон и строительные растворы
 - •Силикатные (автоклавные) материалы
 - •Асбестоцементные материалы
 - •Стекло и изделия на его основе
 - •Теплоизоляционные материалы
 - •Глава 16 металлы и сплавы § 16.1. Общие сведения
 - •§ 16.2. Методы определения качества металла (сплава)
 - •§ 16.3. Термическая и химико-термическая обработка
 - •§ 16.4. Черные металлы и сплавы
 - •Материалы со специальными свойствами (стали, сплавы)
 - •Магнитные материалы
 - •Инструментальные материалы
 - •§ 16.5. Цветные металлы и их сплавы
 - •§ 16.6. Коррозия металлов
 - •Классификация коррозионных процессов
 - •Электрохимическая коррозия металлов
 - •§ 16.7. Защита металлов от коррозии Защита металлов от химической коррозии
 - •Экономия на 1 т листа
 - •Защита металлов от электрохимической коррозии
 - •Технико-экономические показатели и выбор методов защиты
 - •Раздел IV
 - •Типы производств
 - •Типизация технологических процессов
 - •Технологичность конструкций изделий
 - •Качество изделий
 - •Понятие о точности обработки
 - •Основные методы и средства контроля качества изделий
 - •Шероховатость поверхности
 - •Выбор заготовок
 - •§ 17.2. Экономическая оценка технологического процесса
 - •Глава 18
 - •Литье в песчано-глинистые формы
 - •Специальные способы литья
 - •§ 18.2. Основы технологии производства заготовок методами пластической деформации
 - •Формообразование заготовок, изделий из пластмасс и резины методами пластической деформации
 - •Формообразование деталей методами порошковой металлургии
 - •§ 18.3. Изготовление неразъемных соединений Понятие о неразъемных соединениях. Виды неразъемных соединений
 - •Сущность процессов сварки материалов и их классификация
 - •Сварка плавлением
 - •Огневая резка материалов
 - •Сварка давлением
 - •Контроль качества сварных соединений
 - •Клеевая технология
 - •§ 18.4. Обработка конструкционных материалов резанием
 - •Обработка на станках-автоматах и полуавтоматах
 - •Чистовая обработка наружных поверхностей тел вращения
 - •Обработка внутренних поверхностей тел вращения.
 - •Обработка плоских поверхностей
 - •Обработка фасонных поверхностей
 - •Методы изготовления деталей зубчатых зацеплений
 - •Обработка резанием неметаллических материалов
 - •Обработка заготовок на агрегатных станках
 - •§ 18.5. Электрофизические методы обработки
 - •Применение ультразвука в промышленности
 - •Плазменная обработка материалов
 - •Лазерная обработка
 - •Глава 19 основные технологические процессы электроники и микроэлектроники § 19.1. Технология изготовления интегральных микросхем
 - •Фотолитография в микроэлектронике
 - •Нанесение тонких пленок в вакууме
 - •Осаждение из газовой фазы
 - •§ 19.2. Технология изготовления печатных плат
 - •Технологические процессы изготовления пп
 - •Субстрактивные методы изготовления печатных плат
 - •Технология изготовления многослойных печатных плат
 - •Аддитивные методы изготовления печатных плат
 - •Печатные платы с многопроводным монтажом
 - •Глава 20 технология сборочных процессов § 20.1. Понятие о технологическом процессе сборки и его организационных формах
 - •§ 20.2. Контроль и испытание готовых изделий
 - •Глава 21 основы технологии строительного производства § 21.1. Роль капитального строительства в развитии народного хозяйства ссср
 - •§ 21.2. Строительные работы
 - •§ 21.3. Основные направления совершенствования строительства
 - •Глава 22 оптимизация технологических процессов § 22.1. Общая постановка задач оптимизации технологических процессов
 - •§ 22.2. Методы оптимизации технологических процессов
 - •Регрессионный и корреляционный методы анализа при оптимизации технологических процессов
 - •Методы планирования эксперимента для оптимизации технологических процессов
 
§ 1.3. Понятие о технологических процессах: принципы их классификации
В основе любого промышленного производства лежит технологический процесс, под которым понимают совокупность операций по добыче и переработке сырья в полуфабрикаты или готовую продукцию. Каждый технологический процесс может быть расчленен на определенное число типовых технологических звеньев или операций и представлен в виде технологической схемы. В технологической схеме способ производства излагается в форме последовательного описания операций, протекающих в соответствующих аппаратах, машинах или ином оборудовании.
В основе разнообразных способов переработки сырья лежат физические, механические и химические процессы, различающиеся между собой характером качественных изменений и превращений вещества. Так, использование физических и механических процессов для переработки сырья характеризуется изменением внешней формы и физических свойств. При этом внутреннее строение и состав вещества, как правило, остаются неизменными. Главную группу механических процессов составляют процессы переработки металлических и неметаллических материалов в изделия. К ним относятся процессы формообразования литьем и пластической деформацией, изготовление неразъемных соединений сваркой, пайкой, клепкой, обработка конструкционных материалов резанием, механосборочные процессы и др. Например, из древесины изготовляют мебель, из металлов штамповкой, резанием, литьем, сваркой, ковкой и другими методами обработки — всевозможные детали машин и аппаратов; из смеси цемента и волокнистых отходов асбеста - шифер, водопроводные трубы, облицовочные плиты и различные асбестоцементые безобжиговые строительные изделия.
Химические процессы в отличие от физических и механических характеризуются изменением не только физических свойств, но и агрегатного состояния, химического состава и внутреннего строения вещества. Например, химической переработкой природного газа из метана получают водород, этилен, ацетилен, метиловый спирт и другие продукты; гидролизом древесины — скипидар, деготь, камформу, ванилин, спирты, канифоль.
Химические процессы лежат в основе жизнедеятельности всех живых организмов. В технологии промышленного производства термин «химические процессы» следует понимать в широком смысле и не отождествлять с производством только химических веществ. Химико-техно-логические процессы являются основой производства многих строительных материалов, металлов и пищевых продуктов, используются в технологии машиностроения, производстве радиоэлектронной аппаратуры, измерительной техники, изделий легкой промышленности.
Однако деление процессов переработки сырья на физические, механические и химические является иногда условным из-за невозможности проведения четкой границы между ними. Так, например, изменение формы и внешнего вида материала сопровождается химическими процессами (электроэрозионная обработка поверхностей, литье в форму), а химические процессы почти во всех производствах сопровождаются механическими. Но несмотря на условность подобной классификации, деление процессов на физические, химические и механические способствует типизации процессов промышленного производства и облегчает выбор наиболее эффективного способа переработки сырья. Такой выбор зависит от многих факторов: доступности сырья, вида используемой энергии, степени сложности аппаратурного оформления, затратами на производственные здания, сооружения, оборудование, их монтаж и эксплуатацию, а также качества и себестоимости готовой продукции.
Классификация основных процессов промышленного производства может быть произведена на основе различных признаков: способа организации технологических процессов, вида используемого сырья, способов и кратности его обработки и т. д.
Целью такой классификации является выявление характерных черт, общих закономерностей, основных достоинств, недостатков и путей совершенствования межотраслевых процессов, группируемых по организационным, сырьевым и технологическим признакам.
По способу организации технологические процессы делятся на периодические, непрерывные и комбинированные (полунепрерывные).
Периодические процессы (например, выплавка стали, литье в форму и др.) проводятся на оборудовании, которое загружается исходными материалами через определенные промежутки времени; после их обработки полученный продукт выгружается. Основным недостатком таких процессов является то, что во время загрузки сырья и выгрузки продукта оборудование не работает (простаивает) или работает не в полную мощность. Это приводит к потерям рабочего времени и большим затратам труда. Кроме того, непостоянство технологического режима в начале и конце процесса усложняет обслуживание, затрудняет автоматизацию и приводит к удлинению продолжительности производительного цикла. Все эти причины и побуждают заменять периодические процессы непрерывными.
Непрерывные процессы (например, разливка стали, переработка нефти, производство цемента) осуществляются в аппаратах, где поступление сырья и выгрузка конечных продуктов производятся непрерывно. Однако все стадии процесса могут протекать одновременно как в различных частях аппарата (например, перегонка нефти в ректификационной колонне), так и в различных аппаратах, составляющих данную установку (например, производство цемента).
Комбинированные процессы являются сочетанием стадий периодических и непрерывных процессов (например, поточные линии механической обработки деталей, коксование углей, работа доменной печи).
По сравнению с комбинированными и периодическими процессами непрерывные отличаются отсутствием простоев оборудования, перерывов в выпуске конечных продуктов, возможностью полной автоматизации и механизации, устойчивостью технологического режима и соответственно большей стабильностью качества готовой продукции. Большая компактность оборудования обеспечивает меньшие капитальные затраты и эксплуатационные расходы на ремонт и обслуживание, уменьшает потребность в рабочей силе, увеличивает производительность труда, позволяет полнее использовать отходящую теплоту. По этим причинам основной тенденцией промышленного производства является замена периодических процессов непрерывными.
Сейчас периодические процессы сохраняют свое значение главным образом в производствах относительно небольшого масштаба (в том числе опытных) с разнообразным ассортиментом продукции. Там применение указанных процессов позволяет достичь большой гибкости в использовании оборудования при меньших затратах.
По кратности обработки сырья различают: процессы с разомкнутой (открытой) схемой, в которой сырье или материал подвергается однократной обработке; процессы с замкнутой (круговой, циркуляционной или циклической) схемой, в которой сырье или вспомогательные материалы неоднократно возвращаются в начальную стадию процесса для повторной обработки иногда и регенерации (восстановление потерянных свойств); комбинированные (со смешанной схемой).
Примером процесса с разомкнутой (открытой) схемой является конвертерный способ получения стали. Примером процесса с замкнутой схемой может служить циркуляция специальной жидкой смеси для охлаждения резца токарного станка при скоростной механической обработке металлов резанием. В такой замкнутой схеме охлаждающая жидкость постоянно циркулирует между бачком, резцом, сборником для жидкости и насосом для ее перекачивания в бачок. Другим примером процеесса с замкнутым циклом может быть химическая переработка нефтяных фракций, где для непрерывного восстановления активности катализатора последний постоянно циркулирует между реакционной зоной крекинга и прокалочной печью для выжигания углерода с его поверхности.
Процессы с замкнутой схемой более компактны, чем процессы с разомкнутой схемой, требуют по сравнению с ними меньшего расхода сырья, вспомогательные материалов и энергии на транспортировку реагентов.
Циклические (с замкнутой схемой) процессы широко используются во многих производствах для многократного полного или частичного возвращения тепловых или материальных потоков в начальную стадию процесса. Это позволяет рационально и экономно расходовать энергию, сырье, материалы и водные ресурсы, получать продукцию высокого качества.
Наиболее совершенные технологические процессы— процессы с замкнутой схемой — являются основой создания безотходных, энергосберегающих производств.
В промышленности часто применяют комбинированные процессы (со смешанной схемой), являющиеся сочетанием процессов с открытой и закрытой схемой (например, производство серной кислоты нитрозным способом). В таких процессах одни промежуточные продукты (оксиды серы) обрабатываются по открытой схеме, проходя последовательно ряд аппаратов, а другие (оксиды азота) — циркулируют по замкнутой схеме.
