- •Оглавление.
- •Раздел I введение в технологию
- •Глава 1
- •Основные понятия и определения
- •§ 1.1. Предмет и содержание курса технологии отраслей промышленности
- •§ 1.2. Связь технологии с экономикой
- •§ 1.3. Понятие о технологических процессах: принципы их классификации
- •§ 1.4. Материальные и энергетические (тепловые) балансы
- •§ 1.5. Понятие о себестоимости и качестве промышленной продукции
- •§ 1.6. Общие положения по технике безопасности и охране труда на промышленных предприятиях
- •Глава 2 сырье, вода и энергия в промышленности § 2.1. Сырье в промышленности
- •Минеральное сырье
- •Растительное и животное сырье
- •Обогащение сырья
- •Комплексное использование минерально-сырьевых ресурсов
- •§ 2.2. Вода в промышленности
- •Промышленная водоподготовка
- •Промышленные сточные воды и их очистка
- •§ 2.3. Роль энергии в технологических процессах
- •Рациональное использование энергии
- •Глава 3 научно-техническая революция и научно-технический прогресс в промышленности § 3.1. Сущность, значение и основные направления научно-технического прогресса
- •§ 3.2. Нтр и технология
- •§ 3.3. Химизация народного хозяйства - важное направление нтп
- •§ 3.4. Нтп в области промышленных материалов
- •§ 3.5. Нтп в области орудий труда. Механизация, автоматизация и роботизация производства
- •§ 3.6. Применение вычислительной техники и асу в технологии
- •§ 3.7. Экологические проблемы нтп
- •Раздел II
- •§ 4.2. Основные закономерности, определения и классификация химических процессов
- •§ 4.3. Понятие о скорости и равновесии химических процессов
- •§ 4.4. Выход продукции в химико-технологических процессах
- •§ 4.5. Общие принципы интенсификации химико-технологических процессов
- •Перспективы развития и совершенствования химико-технологических процессов
- •Глава 5. Высокотемпературные процессы § 5.1. Сущность и значение высокотемпературных процессов
- •Влияние температуры на процессы, идущие в кинетической области
- •Влияние температуры на скорость процессов в диффузионной области
- •Условия, ограничивающие применение высоких температур
- •Типовое оборудование
- •§ 5.2. Тенденции совершенствования высокотемпературных процессов
- •§ 5.3. Высокотемпературные процессы в металлургии
- •Высокотемпературные процессы черных металлов в производстве
- •§ 5.4. Высокотемпературные процессы в производстве строительных материалов
- •§ 5.5. Высокотемпературная переработка топлива
- •Термические процессы переработки нефти и нефтяных фракций
- •§ 5.6. Высокотемпературные процессы в химической промышленности
- •Глава 6 электрохимические процессы § 6.1. Значение и сущность электрохимических процессов
- •Основные закономерности электрохимических процессов
- •§ 6.2. Электролиз водных растворов Электрохимическое производство хлора и едкого натра (каустической соды)
- •Электролиз воды
- •Электрохимическое производство продуктов окисления
- •§ 6.3. Гидроэлектрометаллургия
- •§ 6.4. Электролиз расплавленных сред
- •Свойства расплавленных электролитов
- •Глава 7 каталитические процессы § 7.1. Роль каталитических процессов, основные закономерности и определения
- •§ 7.2. Применение каталитических процессов в промышленности
- •§ 7.3. Производство аммиака
- •§ 7.4. Каталитические процессы нефтепереработки
- •Глава 8 процессы, идущие под повышенным или пониженным давлением § 8.1. Роль давления в технологии
- •§ 8.2. Давление как фактор интенсификации газообразных процессов
- •§ 8.3. Роль давления в жидкофазных и твердофазных процессах
- •Глава 9 биохимические процессы § 9.1. Основные понятия и определения
- •§ 9.2. Применение биотехнологических процессов в промышленности
- •Глава 10 фотохимические процессы
- •Глава 11 радиационно-химические процессы
- •Глава 12 плазмохимические процессы § 12.1. Общие понятия и определения
- •§ 12.2. Виды плазмохимических процессов
- •Глава 13 общие сведения о физических процессах химической технологии § 13.1. Значение физических процессов и их классификация
- •§ 13.2. Виды физических процессов Физико-механические процессы
- •Массообменные процессы
- •Раздел III
- •§ 14.2. Кислоты, щелочи Неорганические кислоты
- •§ 14.3. Минеральные удобрения
- •§ 14.4. Полимеры Общие сведения о полимерах, их строении, свойствах и способах получения
- •Пластмассы, их свойства, значение и применение в народном хозяйстве
- •Химические волокна и их применение в народном хозяйстве
- •Каучуки и резина
- •§ 14.5. Нефтепродукты
- •Глава 15 строительные материалы § 15.1. Общие сведения
- •§ 15.2. Основные виды строительных материалов Природные (естественные) материалы, применяемые в строительстве
- •Керамические материалы
- •Огнеупорные материалы
- •Минеральные вяжущие
- •Бетон, железобетон и строительные растворы
- •Силикатные (автоклавные) материалы
- •Асбестоцементные материалы
- •Стекло и изделия на его основе
- •Теплоизоляционные материалы
- •Глава 16 металлы и сплавы § 16.1. Общие сведения
- •§ 16.2. Методы определения качества металла (сплава)
- •§ 16.3. Термическая и химико-термическая обработка
- •§ 16.4. Черные металлы и сплавы
- •Материалы со специальными свойствами (стали, сплавы)
- •Магнитные материалы
- •Инструментальные материалы
- •§ 16.5. Цветные металлы и их сплавы
- •§ 16.6. Коррозия металлов
- •Классификация коррозионных процессов
- •Электрохимическая коррозия металлов
- •§ 16.7. Защита металлов от коррозии Защита металлов от химической коррозии
- •Экономия на 1 т листа
- •Защита металлов от электрохимической коррозии
- •Технико-экономические показатели и выбор методов защиты
- •Раздел IV
- •Типы производств
- •Типизация технологических процессов
- •Технологичность конструкций изделий
- •Качество изделий
- •Понятие о точности обработки
- •Основные методы и средства контроля качества изделий
- •Шероховатость поверхности
- •Выбор заготовок
- •§ 17.2. Экономическая оценка технологического процесса
- •Глава 18
- •Литье в песчано-глинистые формы
- •Специальные способы литья
- •§ 18.2. Основы технологии производства заготовок методами пластической деформации
- •Формообразование заготовок, изделий из пластмасс и резины методами пластической деформации
- •Формообразование деталей методами порошковой металлургии
- •§ 18.3. Изготовление неразъемных соединений Понятие о неразъемных соединениях. Виды неразъемных соединений
- •Сущность процессов сварки материалов и их классификация
- •Сварка плавлением
- •Огневая резка материалов
- •Сварка давлением
- •Контроль качества сварных соединений
- •Клеевая технология
- •§ 18.4. Обработка конструкционных материалов резанием
- •Обработка на станках-автоматах и полуавтоматах
- •Чистовая обработка наружных поверхностей тел вращения
- •Обработка внутренних поверхностей тел вращения.
- •Обработка плоских поверхностей
- •Обработка фасонных поверхностей
- •Методы изготовления деталей зубчатых зацеплений
- •Обработка резанием неметаллических материалов
- •Обработка заготовок на агрегатных станках
- •§ 18.5. Электрофизические методы обработки
- •Применение ультразвука в промышленности
- •Плазменная обработка материалов
- •Лазерная обработка
- •Глава 19 основные технологические процессы электроники и микроэлектроники § 19.1. Технология изготовления интегральных микросхем
- •Фотолитография в микроэлектронике
- •Нанесение тонких пленок в вакууме
- •Осаждение из газовой фазы
- •§ 19.2. Технология изготовления печатных плат
- •Технологические процессы изготовления пп
- •Субстрактивные методы изготовления печатных плат
- •Технология изготовления многослойных печатных плат
- •Аддитивные методы изготовления печатных плат
- •Печатные платы с многопроводным монтажом
- •Глава 20 технология сборочных процессов § 20.1. Понятие о технологическом процессе сборки и его организационных формах
- •§ 20.2. Контроль и испытание готовых изделий
- •Глава 21 основы технологии строительного производства § 21.1. Роль капитального строительства в развитии народного хозяйства ссср
- •§ 21.2. Строительные работы
- •§ 21.3. Основные направления совершенствования строительства
- •Глава 22 оптимизация технологических процессов § 22.1. Общая постановка задач оптимизации технологических процессов
- •§ 22.2. Методы оптимизации технологических процессов
- •Регрессионный и корреляционный методы анализа при оптимизации технологических процессов
- •Методы планирования эксперимента для оптимизации технологических процессов
§ 5.4. Высокотемпературные процессы в производстве строительных материалов
Большинство строительных материалов содержат в своем составе силикаты, алюмосиликаты и другие соли кремниевой кислоты, а также высокоогнеупорные оксиды Al, Mg, Ca, Be, Zr и др. Их получают путем термической или термохимической переработки природного силикатного сырья. Промышленность силикатов, являясь главной частью промышленности строительных материалов, включает три основные отрасли: производство вяжущих веществ, керамики и стекла. Все эти материалы имеют огромное значение для народного хозяйства, разнообразен их ассортимент, широка область их применения.
Минеральные вяжущие вещества подразделяются на воздушные и гидравлические; последние имеют несравнимо большее значение и применяются для изготовления сборных бетонных и железобетонных конструкций и сооружений. К гидравлическим вяжущим относят портландцемент, цементы с различными добавками, гидравлическую известь и др.
Керамику подразделяют на следующие группы: строительная керамика (строительный кирпич, кровельная черепица, керамические плитки); облицовочные материалы; огнеупоры; тонкая керамика (фарфоровые, фаянсовые изделия); специальная керамика.
В строительной индустрии большую роль играет стекло и новые конструкционные материалы — ситаллы? стеклопластики и др.
Сырьем для промышленности силикатов служат различные природные материалы (глины, мергели, мел, известняк, доломит, кварцевый песок, кварцит, нефелин), а также и вещества синтетического происхождения (сода, бура, оксиды различных металлов и др.). Основным сырьем для изготовления керамики являются глины и каолины. Важнейшим минералом, входящим в их состав, является каолинит AI2O3 . 2SiC2 . 2H2O. Обычно в глинах также содержатся алюмосиликаты, оксиды железа, кальция, магния и т. д.
Сырьем для производства цементов служат известковые, мергелистые и глинистые породы. В глинах содержатся необходимые для производства портландцемента оксиды — SiO2, А12Оз, Fe2O3, в известняках — СаО. Кроме того, применяются различные добавки: промышленные отходы, шлаки и т. д. Из этих сырьевых материалов и составляется шихта.
Все процессы силикатной технологии состоят из нескольких стадий: подготовка сырья (обогащение, дробление, тонкий помол), смешение компонентов и составление шихты.
В технологии цемента и керамики имеется много общего, поскольку физико-химические основы процессов, температурные режимы, сырьевая база и оборудование предприятий во многом сходны. Для производства силикатных строительных материалов характерны типовые процессы и операции, к которым относятся не только однотипные механические процессы (дробление, размол, смешение материалов), но и физико-химическая обработка, проходящая при высокой температуре с образованием из шихты тех или иных минералов или их смесей.
Подготовка сырьевой смеси в производстве силикатов должна обеспечить высокую интенсивность последующих стадий высокотемпературного обжига, спекания или сплавления.
Основной стадией производства всех силикатов является высокотемпературная обработка шихты, в результате которой последовательно происходят элементарные процессы удаления из сырья влаги и углекислого газа, диффузия реагентов, спекание, плавание и образование новых соединений, а также кристаллизация, возгонка и ряд других процессов. При нагревании шихты в начальный период большинство процессов проходит в твердой фазе, поэтому для максимального ускорения стадии диффузии чрезвычайную важность имеет технологическая подготовка шихты. При дальнейшем нагревании появляется некоторое количество жидкой фазы, что способствует резкому ускорению диффузии и завершению химических превращений в результате процесса спекания. Спекание является заключительным этапом высокотемпературного обжига керамики, огнеупоров и цемента, в результате чего полностью формируется керамическое изделие или синтезируются минералы цементного клинкера.
Существует несколько видов высокотемпературного обжига (спекание в твердой фазе и с участием жидкой фазы). При полном или частичном расплавлении шихты и охлаждении расплава получается стеклообразная фаза. Присутствие стеклообразной «фазы в керамике обеспечивает ее высокую прочность, связывая отдельные минералы в прочный монолит. В производстве стекла и эмалей получение вещества в стеклообразном состоянии является целью технологического процесса.
Изготовление керамических изделий состоит из следующих стадий: подготовка сырья; приготовление керамической массы, формование изделий; сушка; обжиг; заключительная операция нанесение рисунка или глазури.
Подготовка сырья описана нами выше. Приготовление керамической массы происходит в шнеках-смесителях, мешалках, в смесительных бегунах, где сырье смешивается с некоторым количеством воды до получения массы определенной консистенции.
Формование изделий ведется в механических и гидравлических прессах; тонкую и специальную керамику формуют методом литья жидкой массы (шликера). Сушку отформованных изделий производят чаще всего в сушилках различных типов: камерных, подовых, туннельных.
Обжиг — наиболее важная часть производства керамические изделий. Температурный режим обжига строго контролируется и варьируется для различных видов керамики (например, для кирпича температура обжига 105.0-1100 °С, для огнеупоров - 1350 °С и выше). Обжиг керамических изделий осуществляют в печах периодического и непрерывного действия. Наибольшее распространение получили кольцевые и туннельные печи непрерывного действия. Такая печь представляет собой длинный канал (до 100 м), имеющий внутри рельсовый путь, по которому движутся плотно сомкнутые вагонетки-платформы с обжигаемыми изделиями. Печь имеет три зоны: подогрева, обжига и охлаждения. Нагрев осуществляется дымовыми газами, поступающими противотоком к движению вагонеток.
Производство портландцемента. Портландцемент занимает первое место среди всех вяжущих веществ по масштабам производства и потребления и выпускается в мире в сотнях миллионов тонн ежегодно. Изделия из портландцемента обладают высокой механической прочностью, высокой морозостойкостью, быстро твердеют на воздухе и под водой. По химическому составу готовый портландцемент представляет собой смесь различных материалов, состоящих из силикатов кальция, алюминатов кальция, алюмоферрита кальция и свободных оксидов СаО и MgO.
Производство портландцемента состоит из нескольких стадий, включающих подготовку сырья, обжиг сырьевой смеси и получение полуфабриката (клинкера), помол клинкера с добавками, его складирование и упаковку. Исходным сырьем для производства портландцемента служат глина, известняк или их природная смесь — мергель. На стадии подготовки сырья необходима точная дозировка исходных материалов, их тонкое измельчение и тщательное смешение для получения высококачественной однородной массы. Сырье к обжигу готовят двумя способами: сухим и мокрым. Соответственно способы производства портладцемента делят на сухой и мокрый. Мокрый способ обеспечивает более равномерное спекание, при этом улучшается качество массы, но увеличивается расход топлива на обжиг.
Обжиг сырьевой смеси проводят в барабанных (вращающихся) печах непрерывного действия (рис. 5.9), отапливаемых обычно (как правило) газообразным топливом.
Барабанная печь длиной до 200 м имеет частоту вращения 1,0—1,5 об/мин. Печь установлена с небольшим наклоном, чтобы обжигаемый материал перемещался в печи сверху вниз; сырье подается в верхнюю (приподнятую) часть печи, а топочные газы движутся противотоком по отношению к сырьевой смеси. Вначале по ходу смеси происходит испарение влаги, затем идет разложение гидратов, карбонатов с образованием свободных оксидов и, наконец, процесс спекания. Таким образом, в печи существуют три зоны: сушки и подогрева, кальцинации (900-1200 °С) и спекания (1300-1450 °С). Выходящий из печи обожженный продукт (клинкер) охлаждается в холодильнике и вылеживается на складе 10—15 сут, затем он поступает на тонкий размол в трубные мельницы и далее на хранение в железобетонные силосы-хранилища.