
- •Оглавление
- •Введение
- •Теоретические основы построения математических моделей поверхностных акустических волн в упругих средах
- •Основные понятия
- •Частные случаи поверхностных акустических волн
- •Уравнения движения, граничные условия, характеристическое уравнение
- •Волны Рэлея
- •2.2 Волны Лява
- •Волны Стоунли
- •Практическое использование
- •Заключение
- •Список литературы
Практическое использование
В настоящее время применение поверхностных акустических волн получило широкое распространение во многих сферах жизни людей Например, в медицине (ультразвуковое исследование), в геологии (сейсморазведка), в технике (ультразвуковая дефектоскопия) и тд..
Устройства на ПАВ, такие как датчики, фильтры, устройства обработки сигналов и т.п. получили широкое применение в системах связи, навигации и медицинской аппаратуре, обеспечивая надежное преобразование сигналов в диапазоне частот до нескольких ГГц. Устройства на ПАВ проектируются с использованием компьютерного моделирования, поскольку этот путь намного дешевле и быстрее, чем изготовление и исследование конкретных прототипов.
Для увеличения точности моделирования приходится использовать современные численные методы, позволяющие анализировать структуру со сложной конфигурацией системы электродов, так как устройства на ПАВ содержат встречно-штыревые преобразователя (ВШП), нанесенные на поверхность пьезоэлектрической среды. При наличии металлических электродов ПАВ, распространяющаяся вдоль поверхности пьезоэлектрика, частично отражается от электродов. При совпадении периода ПАВ с периодом системы электродов обеспечивается условие наиболее эффективной генерации и приема ПАВ, при этом ПАВ будут распространяться в двух противоположных направлениях, что может приводить к недопустимым потерям энергии. Для уменьшения потерь энергии применяют сложные геометрические формы ВШП, что дополнительно усложняет моделирование такой системы. Кроме того, необходимо учитывать механические параметры ВШП (“mass loading effect”), влияющие на условия распространения и параметры ПАВ.
Заключение
В ходе работы была достигнута поставленная цель, а именно изучены и проанализированы основные аспекты построения математических моделей поверхностных акустических волн в упругих средах. Для достижения главной цели работы были решены все поставленные задачи.
Изучены теоретические основы построения математических моделей поверхностных акустических волн в упругих средах, такие как основные понятия (упругие среды, упругие волны, акустические волны и т.д.) и наиболее часто встречаемые частные случаи поверхностных акустических волн.
Рассмотрены Уравнения движения, граничные условия, характеристическое уравнение для трёх наиболее часто встречающихся видов ПАВ( Рэлея, Лява, Стоунли).
Так же было изучено практическое применение математических моделей поверхностных акустических волн в упругих средах.
Список литературы
Викторов И. А. Звуковые поверхностные волны в твердых телах. М.: Наука, 1981.
Варыгина М.П., Похабова М.А., Садовская О.В., Садовский В.М. Вычислительные алгоритмы для анализа упругих волн в блочных средах с тонкими прослойками // Вычислительные методы и программирование. – 2011. – Т. 12,№ 2. – С. 435-442.
Гуляев Ю. В., Плесский В. П. Медленные поверхностные акустические волны в твердых телах.— Письма в ЖТФ, 1977, 3, № 5, с. 220—223.
Гришин A.С., Рэлеевские волны в изотропной среде. Аналитические решения и аппроксимации// Изв. РАН. MTT, 2001, No.1, pp. 48 - 52.
Иванов Г.В., Волчков Ю.М., Богульский И.О., Анисимов С.А., Кургузов В.Д. Численное решение динамических задач упругопластического деформирования твердых тел. – Новосибирск: Сиб. унив. изд-во, 2002 – 352 с.
Исакович М. А. Общая акустика. Учебное пособие. Издательство «Наука», Главная редакция физико-математической литературы, М., 1973 г.
Осетров А.В., Нгуен В.Ш. Расчет параметров поверхностных акустических волн в пьезоэлектриках методом конечных элементов // Вычислительная механика сплошных сред. – 2011. – Т. 4. – № 4. – С. 71-80.
Работнов Ю.Н. Механика деформируемого твердого тела. – М.: Наука, 1979. – 744 с
Садовский В.М., Садовская О.В.,. Похабова М.А. Вычислительная механика сплошных сред. – 2014. – Т. 7, № 1. – С. 52-60
Varygina M.P., Pokhabova M.A., Sadovskaya O.V., Sadovskii V.M. Numerical algorithms for the analysis of elastic waves in block media with thin interlayers. Numerical Methods and Programming, 2011, vol. 12, no. 2, pp. 435-442.
Hofer M., Finger N., Kovacs G., Schöberl J., Zaglmayr S., Langer U., Lerch R. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures // IEEE Trans. UFFC. – 006. – V. 53, N. 6. –Р. 1192-1201.
Rayleigh. On waves propagated along the plane surface3 of an elastic solid.— Proc. London Math. Soc, 1885, 17, p. 4—11. 1.