Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Modernizatsia_nizkovoltnogo_oborudovania.rtf
Скачиваний:
55
Добавлен:
18.03.2016
Размер:
9.23 Mб
Скачать

Для начала рассмотрим режимы работы всех силовых трансформаторов

Различают несколько режимов работы трансформаторов.

Рабочий режим, при котором напряжение первичной обмотки близко к номинальному или равно ему, а ток определяется нагрузкой трансформатора.

Нагрузочным или рабочим называется режим работы трансформатора, при котором к первичной обмотке подведено напряжение U1, а к вторичной подключены потребители ZН (рисунок 2.1), так что I2 > 0.

Рисунок 2.2.1— Нагрузочный режим однофазного трансформатора

Это основной режим, при котором вторичный ток изменяется в пределах 0<I2 ≤ I2Н , а коэффициент мощности cosφ2 определяется характером нагрузки и может изменяться от нуля до 1,0. Особенности взаимодействий в рабочем режиме трансформатора определяются тем, что ток I2 создает МДС F2 = I2W2 и соответствующий магнитный поток Ф2, действующие встречно по отношению к МДС F1 и потоку Ф0, т.е. в соответствии с принципом Ленца реакция вторичной обмотки направлена на уменьшение основного магнитного потока взаимоиндукции Ф0, созданного при холостом ходе.

Ток вторичной обмотки подобно току первичной обмотки создает магнитный поток рассеяния Фрс2, действие которого учитывается или величиной ЭДС самоиндукции Ерс2, или уравновешивающим ее падением напряжения I2x2, на индуктивном сопротивлении рассеяния:

2.2.1

где L2 — индуктивность рассеяния вторичной обмотки.

Рисунок 2.2.2 — Схемы замещения первичной (а) и вторичной (б) обмоток трансформатора при нагрузке

Электрическая схема замещения вторичной обмотки показана на рисунке 2.2.2, б, на которой r2 — её активное сопротивление, а полное сопротивление нагрузки:

2.2.2

Уравнение электрического равновесия вторичной обмотки при нагрузке имеет вид:

2.2.3

Это уравнение источника электрической энергии, что и представляет собой трансформатор по отношению к нагрузке. Как видно, при работе под нагрузкой напряжение на нагрузке отличается от ЭДС Е2 на величину падения напряжения на внутренних сопротивлениях вторичной обмотки. Следует отметить, что соотношение между ЭДС Е2 и напряжением U2 зависит также от характера нагрузки, о чем будет сказано ниже.

При эксплуатации параллельно включенных трансформаторов важно, чтобы нагрузка между ними распределялась пропорционально их номинальным мощностям. Схема включения на параллельную работу двух однофазных трансформаторов и их упрощенная схема замещения показаны на рисунке 2.2.3

Рисунок – 2.2.3 Схема включения на параллельную работу однофазных трансформаторов (а) и их схема замещения (б)

Как видно из схемы замещения по сопротивлению нагрузки протекает ток равный сумме токов первогои второготрансформаторов. Соответственно полная мощность, отдаваемая параллельно работающими трансформаторами в нагрузку

2.2.4

где полная мощность первого трансформатора,полная мощность второго трансформатора.

Для включения трансформаторов ТрI и ТрII на параллельную работу необходимо, чтобы в режиме холостого хода в их обмотках не возникали уравнительные токи, а при нагрузке не один из трансформаторов не перегружался.

Уравнительные токи протекая между обмотками параллельно работающих трансформаторов вызывают циркуляцию мощности от одного трансформатора к другому, следовательно неравномерную нагрузку трансформаторов, сопровождающуюся увеличением потерь мощности и нагрева:

, 2.2.5

где иЭДС вторичных обмоток трансформаторов в режиме холостого хода (вторичные напряжения при холостом ходе).

Из 2.2.5 следует, что уравнительный ток отсутствует , если разность ЭДС вторичных обмоток не нагруженного трансформатора равна нулю. Равенство выполнимо, если ЭДС вторичных обмоток трансформатора одинаковы по величине и совпадают по фазе, т.е. имеют одинаковое количество витков и принадлежат к одной группе соединения обмоток.

Таким образом, идеальные условия параллельной работы трансформаторов можно сформулировать следующим образом:

- группы соединения обмоток одинаковы;

- соотношение мощностей трансформаторов не более 1: 3;

- коэффициенты трансформации (линейных напряжений) отличаются не более чем на ±0,5%;

- напряжения короткого замыкания отличаются не более чем на ±10%;

- произведена фазировка трансформаторов.

Режим «горячего резерва» трансформатора.

Трансформатор считается находящимся в «горячем резерве», если он отключен от источника и приемника энергии только выключателями, а разъединители при этом включены.

Из определения следует, что в «горячем резерве» могут находиться только те трансформаторы, которые в схеме своего присоединения имеют не только разъединители, но и выключатели, либо только одни выключатели. Перевод трансформатора из оперативного состояния «в горячем резерве» в оперативное состояние «в работе» должен осуществляться путем включения только выключателей без операций разъединителями.

Техническое состояние трансформатора, находящегося «в горячем резерве», должно быть таково, чтобы его можно была в любой момент ввести «в работу».

Режим «холодного резерва» трансформатора.

Трансформатор считается находящимся в «холодном резерве», если он отключен разъединителями и выключателями, при наличии таковых в схеме присоединения.

Трансформатор, находящийся «в холодном резерве», может быть как в исправном, так и в неисправном состоянии, что отмечается в оперативной документации при приеме и сдаче дежурства.

На трансформаторе, находящемся «в холодном резерве», не должны стоять защитные переносные заземления, при установке последних оборудование переходит в оперативное состояние «в ремонте».

Рисунок 2.2.4 – Электрическая схема трансформатора

Режим короткого замыкания трансформатора, при котором его вторичная обмотка замкнута накоротко (или подключена к нагрузке с очень малым сопротивлением).

При коротком замыкании вторичной обмотки сопротивление трансформатора очень мало и ток короткого замыкания во много раз больше номинального. Такой большой ток вызывает сильный нагрев обмоток трансформатора и приводит к выходу его из строя. Поэтому трансформаторы снабжаются защитой, отключающей его при коротких замыканиях.

При опыте короткого замыкания вторичная обмотка трансформатора замкнута накоротко, т. е. напряжение на зажимах вторичной обмотки равно нулю. Первичная обмотка включается в сеть с таким пониженным напряжением, при котором токи в обмотках равны номинальным. Такое пониженное напряжение называется напряжением короткого замыкания и обычно равно 5,5% от номинального значения.

По данным опыта короткого замыкания определяется напряжение короткого замыкания Uкз %, его активная Uа % и реактивная Uх % составляющие, потери на нагревание обмоток трансформатора Pобм при номинальной нагрузке и активное, реактивное и полное сопротивления трансформатора при коротком замыкании rкз, xкз и zкз.

Потери в обмотках указываются ваттметром.

Рисунок 2.2.5 – Схема проведения опыта короткого замыкания

2.3 Отказы силовых трансформаторов и переходные процессы в трасформаторах

Отказысиловых трансформаторов

Трансформаторы различных габаритов и конфигураций являются сердцем энергетических систем. Будучи крайне необходимым и дорогостоящим оборудованием, трансформаторы играют важную роль в передаче электроэнергии и целостности энергетической системы, в общем. Тем не менее, трансформаторы имеют свой ресурс эксплуатации, в случае превышения которого может произойти отказ трансформатора. Под воздействием неблагоприятных условий системе и системному оборудованию могут быть нанесены тяжелые повреждения, кроме того, возможно недопустимое прерывание снабжения потребителей. Поскольку период ремонта и замены силовых трансформаторов обычно очень длительный, ограничение ущерба, наносимого поврежденным трансформаторам, является первоочередной целью их защиты.

Экономическое воздействие от отказа силового трансформатора:

- прямые экономические последствия ремонта или замены трансформатора;

- непрямые экономические последствия, связанные с потерей мощности или перерывами электроснабжения.

Такие условия эксплуатации, как перегрузка трансформатора вследствие ошибки и т.д., часто приводят к отказу трансформатора. Это подчеркивает необходимость функций защиты трансформатора от перегрузки и перегрева. Длительная работа трансформатора в таких анормальных условиях, как неисправности или перегрузки, может подвергнуть риску силовой трансформатор. Адекватная защита необходима для скорейшего отключения трансформатора при таких обстоятельствах. Используемый тип защиты должен уменьшать время отключения в случае наличия неисправности внутри трансформатора и минимизировать риск катастрофической поломки, чтобы упростить возможный ремонт.

Риск отказа трансформатора измеряется двумя параметрами: частота сбоев в работе и серьезность поломки. Чаще всего отказ трансформатора становится результатом повреждения изоляции. Эта категория включает неправильный или некачественный монтаж, износ изоляции, короткое замыкание и, с другой стороны, внешние факторы резкого изменения напряжения в электросети, такие как молния или порыв на линии электропередачи.

Сбои в работе трансформаторов могут быть классифицированы следующим образом:

- Неисправность обмоток вследствие коротких замыканий (витковое замыкание, замыкание «фаза-фаза», «фаза земля», открытая обмотка);

- Повреждения сердечника (нарушение изоляции сердечника, укороченные пластины);

- Терминальные повреждения (открытые вводы, неплотные соединения, короткие замыкания);

- Сбои системы регулирования напряжения под нагрузкой (механические, электрические, короткие замыкания, перегрев);

- Ненормальные условия эксплуатации (перенасыщение, перегрузка, перенапряжение);

- Внешние неисправности.

Другими причинами отказа трансформатора могут стать:

Перегрузка – трансформаторы, которые несут устойчивую нагрузку, превышающую номинальную, часто отказывают в связи с перегрузкой.

Перепады напряжения – отказ, вызванный коммутационными перенапряжениями, скачками напряжения, неполадками на линии электропередачи, и другими нарушениями передачи и распределения энергии предполагает, что защите от перенапряжения, адекватности крепления витков обмоток и мощности коротких замыканий должно уделяться больше внимания.

Неплотные соединения – неплотные соединения, неправильное сопряжение разнородных металлов, неправильная затяжка болтовых соединений может также привести к отказу трансформатора.

Загрязнение масла – загрязнение масла ведет к образованию осадка, влаги и отложению углерода в масляном баке, что часто приводит к поломке трансформатора.

Конструкционные производственные ошибки – включают такие проблемы, как болтающаяся или неподдерживаемая ошиновка, плохая фиксация, некачественная пайка, недостаточная изоляция сердечника, низкая выдерживаемая мощность коротких замыканий и посторонние предметы, оставленные в баке.

Неправильное обслуживание управление – ненадлежащее обслуживание и эксплуатация являются главной причиной отказа трансформаторов. Сюда относятся отключенная или неправильно установленная система управления, потери охлаждения, накопление грязи и масла, коррозия.

Внешние факторы – некоторые внешние факторы, такие как наводнения, пожары, взрывы, удары молнии, и высокая влажность могут стать причиной повреждения трансформатора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]