- •9) Производная. Геометрический и физический смысл производной
- •10) Производные некоторых основных элементарных функций
- •11) Основные правила дифференцирования
- •12 Таблица основных формул дифференцирования
- •Производные высших порядков
- •16.Экстремум функции. Необходимое и достаточное условие экстремума
- •17. Направление выпуклости. Точки перегиба.
- •18. Асимптоты функции
- •20. Первообразная и неопределенный интеграл, их свойства.
- •21. Таблица интегралов
- •I. Метод непосредственного интегрирования
- •II. Метод подстановки (интегрирование заменой переменной)
- •III. Метод интегрирования по частям
- •Рациональные дроби. Простейшие рациональные дроби и их интегрирование
- •28. Свойства определённого интеграла
- •37. Знакопеременные ряды. Абсолютная и условная сходимость.
- •38. Знакочередующиеся ряды. Признак Лейбница.
- •39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.
- •40. Предел и непрерывность функции нескольких переменных.
- •41. Частные производные функции нескольких переменных .
- •42. Полный дифференциал функции нескольких переменных.
12 Таблица основных формул дифференцирования
|
Функция |
Производная |
Функция |
Производная |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Производные высших порядков
Если
функция
имеет
производную в каждой точке
своей
области определения, то ее производная
есть
функция от
.
Функция
,
в свою очередь, может иметь производную,
которую называют производной
второго порядка функции
(или второй
производной)
и обозначают символом
.
Таким образом
![]()
адание. Найти
вторую производную функции ![]()
Решение. Для начала найдем первую производную:
![]()
![]()
![]()
![]()
Для нахождения второй производной продифференцируем выражение для первой производной еще раз:
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
Ответ. ![]()
15.Признак возрастания ,убывания функции.
Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения. Достаточный признак возрастания функции. Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I. Достаточный признак убывания функции. Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I. Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х1 и x2 из интервала. Пусть x1<x2. По формуле Лагранжасуществует число с∈(х1, x2), такое, что
(1)
Число с принадлежит интервалу I, так как точки х1 и x2 принадлежат I. Если f'(x)>0 для х∈I то f’(с)>0, и поэтому F(x1)<F(x2) — это следует из формулы (1), так как x2 — x1>0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f'(с)<0, и потому f(x1)>f (х2) — следует из формулы (1), так как x2—x1>0. Доказано убывание функции f на I. Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания). Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f'(t) (см. Мгновенная скорость). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t1 <t2, то f (t1)<f (t2). Это означает, что функция f возрастает на промежутке I. Замечание 1. Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку. Замечание 2. Для решения неравенств f' (х)>0 и f' (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f' сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f' в какой-нибудь точке промежутка.
16.Экстремум функции. Необходимое и достаточное условие экстремума
Необходимое условие экстремума
Функция
g(x) в точке
имеет
экстремум(максимум или минимум), если
функция определена в двухсторонней
окрестности точки
и
для всех точек x некоторой области:
,
выполнено соответственно неравенство
(в
случае максимума) или
(в
случае минимума).
Экстремум
функции находиться из условия:
,
если производная существует, т.е.
приравниваем первую производную функции
к нулю.
Достаточное условие экстремума
1) Первое достаточное условие:
Если:
а)
f(x) непрерывная
функция и
определена в некоторой окрестности
точки
такой,
что первая производная в данной
точке равна нулю или не существует.
б) f(x) имеет конечную производную в окрестности задания и непрерывности функции
в)
производная сохраняет определенный
знак справа от точки
и
слева от этой же точки, тогда точку
можно
охарактеризовать следующим образом
Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.
2) Второе достаточное условие
Если функция g(x)
обладает второй производной
причем
в некоторой точке
первая
производная равна нулю, а вторая
производная отлично от нуля. Тогда
точка
экстремум
функции g(x), причем если
,
то точка является максимумом; если
,
то точка является минимумом.
3) Третье достаточное условие
Пусть
функция g(x) имеет в некоторой окрестности
точки
N
производных, причем значение первых (N
- 1)- ой и самой функции в этой точке равно
нулю, а значение N-ой производной отлично
от нуля. В таком случае:
а)
Если N - четно, то точка
экстремум
функции:
у
функции точка максимума,
у
функции точка минимума.
б)
Если N - нечетно, то в точке
у
функции g(x) экстремума нет.
Абсолютный экстремум
Наибольшее(наименьшее) значение на сегменте [a;b] непрерывной функции g(x) достигается или в критической точке этой функции(т.е. где производная равна нулю или не существует), или в граничных точках а и b данного сегмента.
