Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОЭ, ЗАДАНИЕ метод.указания для заочников.doc
Скачиваний:
19
Добавлен:
18.03.2016
Размер:
688.13 Кб
Скачать

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Н.М.Гарифуллин

ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

Методические указания и контрольные задания

Для студентов заочной форме обучения специальности «Физика и техника оптической связи»

УФА

РИО БашГУ

2005

Печатается по решению кафедры статистической радиофизики и связи.

Протокол № от ноября 2005г.

Составитель: к.ф.-м.н., доц. Гарифуллин Н.М.

Общие замечания

1. Цели и задачи учебной дисциплины «Физические основы электроники».

Целью данной учебной дисциплины является изучение студентами физических эффектов и процессов, лежащих в основе принципов действия полупроводниковых приборов. Основными задачами данной учебной дисциплины являются:

  • ознакомление с современным уровнем развития физических основ полупроводниковой электроники с учетом использования перспективных полупроводниковых материалов;

  • изучение физических процессов образования свободных носителей заряда в полупроводниках;

  • изучение физических процессов, происходящих на границе двух полупроводников, на границе металл-полупроводник, на границе диэлектрик- полупроводник;

  • изучение электрических параметров и характеристик электрических контактов и структур полупроводниковой электроники.

2.Требования к уровню освоения содержания дисциплин.

В итоге изучения дисциплины студент должен знать:

  • физические явления и эффекты, определяющие принцип действия основных электронных приборов;

  • формулы плотности дрейфового и диффузионного токов в полупроводниках и контактной разности потенциалов р-п-перехода;

  • уравнение вольтамперной характеристики идеализированного p-n-перехода и влияние на нее ширины запрещенной зоны полупроводникового материала, температуры и концентрации примесей;

- физический смысл основных параметров р-n- перехода;

- причины инерционности p-n-переходов и полупроводниковых структур;

  • причины нарушения равновесного состояния в полупроводниковых структурах;

  • зонные диаграммы собственных и примесных полупроводников, р-п-перехода, контакта металл- полупроводник и простейшего гетероперехода;

  • зонные диаграммы структур металл- диэлектрик- полупроводник и физические механизмы управления током в них;

  • влияние температуры на физические процессы в структурах и их характеристики;

студент должен уметь:

  • находить значения электрофизических параметров полупроводниковых материалов (кремния, германия, арсенида галлия) в учебной и справочной литературе для оценки их влияния на параметры структур;

  • оценивать значения концентраций основных и неосновных носителей полупроводников при различных концентрациях примесей и различных температурах;

  • изображать структуры с различными контактными переходами, объяснять их принцип действия и составлять электрические и математические модели этих структур;

и получить навыки экспериментального определения статических характеристик и параметров различных структур.

  1. Содержание лекций

Лекция 1. Кристаллическое строение твердого тела. Идеальные кристаллы. Решетки Бравэ. Индексы Миллера. Дефекты и примеси в реальных кристаллах. Донорные и акцепторные примеси. Тепловые колебания кристаллической решетки.

Лекция 2. Зонная структура твердых тел. Уравнение Шредингера для кристалла, методы его решения. Модель Кронига-Пенни. Энергетический спектр электронов. Приведенные зоны Бриллюэна. Зонная диаграмма полупроводников, металлов и диэлектриков. Эффективная масса электрона. Энергетические уровни примесных атомов в полупроводниках.

Лекция 3. Статистика равновесных носителей тока в полупроводниках. Статистика Максвелла-Больцмана и Ферми-Дирака. Физический смысл уровня Ферми. Расчет концентрации электронов и дырок в полупроводниках. Эффективная плотность электронных и дырочных состояний. Уравнение электронейтральности. Положение уровня Ферми в собственном и примесном полупроводниках и его зависимость от температуры и концентрации донорных и акцепторных примесей. Вырожденные полупроводники.

Лекция 4. Неравновесные носители тока. Понятия времени жизни, коэффициента и скорости рекомбинации неравновесных носителей тока. Межзонная рекомбинация, рекомбинация типа Шокли-Рида, поверхностная рекомбинация. Эффективное время жизни.

Лекция 5. Движение носителей в электрическом поле. Дрейфовая скорость, подвижность, плотность дрейфового тока. Удельная проводимость. Диффузионное движение носителей тока. Плотность диффузионного тока. Коэффициент диффузии. Связь подвижности и коэффициента диффузии - соотношение Эйнштейна. Движение основных избыточных носителей тока, радиус экранирования Дебая. Уравнение непрерывности. Движение неосновных избыточных носителей тока, явления инжекции и экстракции. Биполярная диффузия

Лекция 6. Кинетическое уравнение Больцмана. Неравновесная функция распределения электро­нов. Время релаксации. Электропроводность в слабых полях. Типы и механизмы рассеяния носителей тока. Электропроводность в сильных электрических полях. Влияние поля на подвижность и концентрацию носителей тока. Горячие электроны. Влияние поля на величину эффективной массы. Эффект Ганна. Гальваномагнитный эффекта Холла, магниторезистивный эффект. Термоэлектриче­ские явления в полупроводниках. Характеристика термоэлектрических явлений (эффекты Зеебека, Пельтье, Томсона).

Лекция 7. Явления в контакте металл-полупроводниках. Работа выхода электронов. Зонные диаграммы металла и полупроводника до контакта и структуры после контакта в состоянии равновесия. Выпрямление на контакте полупроводник-металл. Барьер Шоттки. Вольтамперная характеристика контакта. Условие получения омического контакта.

Лекция 8. Р – п переход. Электронно-дырочный переход в состоянии равновесия. Контактная разность потенциалов, ее зависимость от ширины запрещенной зоны, концентрации примесей и температуры. Ширина обедненной области. Неравновесное состояние р-п-перехода. Прямое и обратное включение. Вольт - амперная характеристика (ВАХ) идеализированного перехода и ее уравнение. Зависимость ВАХ от концентрации примесей и температуры.

Лекция 9. Отличие реальных электронно-дырочных переходов от идеали-зирванного. Учет генерации и рекомбинации носителей заряда в обедненной области перехода, учет омических сопротивлений р- и n-областей. Учет электрического (лавинного, туннельного) и теплового пробоев при обратном включении перехода и коррекция математического описания ВАХ.

Лекция 10. Параметры p-n-перехода и его электрическая модель. Дифференциальное сопротивление. Барьерная и диффузионная емкости. Зависимость параметров от величины и знака напряжения (смещения). Причины, вызывающие инерционность процессов в р-п-переходе.