Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция-Экологическая-биохимия-первая1.rtf
Скачиваний:
33
Добавлен:
17.03.2016
Размер:
146.17 Кб
Скачать

Лекция Экологическая биохимия (первая)

«Организм без внешней среды, поддерживающей его существование, невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него» Сеченов И.М., 1861

План:

  1. Предмет экологической биохимии

  2. Биохимические аспекты взаимодействия человека с окружающей средой

  3. Общие механизмы влияния вредных факторов окружающей среды на клетки и ткани: а) вредные факторы окружающей среды и их влияние на эритроциты. Физиологические и патологические производные гемоглобина; б) ускорение ПОЛ

Предмет экологической биохимии

Экологическая биохимия изучает физико-химические реакции организма в ответ на любые воздействия ОС. Экологическая биохимия изучает не только влияние ОС на метаболизм организма человека, но и классификацию экологических факторов ОС, рассматривает биохимические аспекты взаимодействия человека с ОС, механизмы защиты от воздействия вредных факторов ОС.

Биохимические аспекты взаимодействия человека с окружающей средой

Если коснуться отношений человека и ОС, то можно увидеть, что есть взаимосвязь между человеком и растениями. Впервые обоснованные сообщения о наличии женских половых гормонов в тканях растений появились в 30-х годах нашего века. Эти гормоны регулируют рост, цветение некоторых растений и созревание плодов. Известна другая версия – растения синтезируют гормоны для того, чтобы использовать их в качестве противозачаточных средств для регулирования численности поедающих их животных. В растениях обнаружены следующие половые гормоны и их аналоги – эстрон (финиковая пальма, гранатовое дерево, яблоня Malus pumila и др.); тестостерон и андростерон – в пыльце сосны и др. описано влияние чеснока, кофе, петрушки, подсолнечника и других продуктов на менструальный цикл у женщин (полагают, что в этих растениях содержатся фитоэстрогены). Примером фитоэстрогена является мирэстрол (в растении Pueraria murifica). Это обнаружилось после того, как выяснилось, что женщины Бирмы и Таиланда используют экстракты из корней этого растения для вызывания аборта. Горох содержит противозачаточные вещества фенольной природы. Интенсивное использование гороха в пище жителями Тибета является регулирующим фактором их численности. В семенах растения Gossipium содержится полифенол госсипол, являющийся мужским контрацептивом. Это вещество воздействует на ЛДГ спермиев, снижая их подвижность. При этом оказывается, что госсипол не влияет на содержание тестостерона и ЛГ в организме и на либидо. Представленные данные указывают на то, что в процессе эволюции растения специально стали синтезировать фитоэстрогены и фитоандрогены, чтобы приспособиться и выжить в контакте с миром животных. Эти вещества также используются растением для отражения атаки болезнетворного организма.

В свете этих открытий стало очевидным, что, поскольку растения содержат половые гормоны или их имитаторы, в природе существуют отработанные механизмы регуляции соответствующих процессов жизнедеятельности человека. Учет этого фактора нужен для решения соответствующих задач медицины. Отсюда очевидна необходимость создания новой области науки – гормональной гигиены питания и диетологии. Количество веществ, проявляющих гормональную активность, в отдельных продуктах должно приниматься во внимание при оценке качества пищи наравне с количеством витаминов, белка, жиров и других биокомпонентов, необходимых для нормальной жизни человека (Бендер, 1986; Мюллер, 1986; Норрис, 1986).

Гормональное взаимодействие между растениями и животными является блестящим примером химического взаимодействия человека с ОС.

Общие механизмы влияния вредных факторов окружающей среды на клетки и ткани: а) вредные факторы окружающей среды и их влияние на эритроциты. Физиологические и патологические производные гемоглобина; б) ускорение ПОЛ

В последние десятилетия экологическая обстановка значительно ухудшилась. В атмосферу ежегодно выбрасывается 4-5млрд тонн СО2, 280млн тонн сернистых газов, около 250млн тонн пыли, 220 млн тонн золы. Отмечается заметное снижение кислорода в атмосфере (ниже 20%). Общая площадь лесов сокращается со скоростью 6 млн га ежегодно. Опасны промышленные отходы, содержащие различные вредные вещества (около 50тыс), к которым живые организмы еще не успели приспособиться, т.к. не встречались с ними на протяжении своей тысячелетней эволюции. В этой связи наблюдается «социально-биологическая аритмия» – несоответствие адаптационных способностей организма человека к темпу изменения ОС. Это приводит к росту токсических, аллергических, генетических, раковых заболеваний.

В воздухе промышленного города в разных точках наблюдения может определяться до 36-64 токсичных ингредиентов, еще больший набор химических загрязнителей выявляется в воздухе жилых помещений – от 45-70. Вредное действие обнаруженных в воздухе промышленных городов веществ усугубляется тем, что в условиях солнечной радиации происходят фотохимические реакции, в результате которых образуются новые, нередко более агрессивные химические соединения, но уже с неизвестным характером биологического действия. Кроме этого, эффект многокомпонентных смесей не всегда является простой суммацией действия их компонентов, часто он может проявляться как усиление действия одного вещества за счет другого, менее токсичного (потенциирование).

Многие химические вещества, содержащиеся в выхлопных газах и являющиеся продуктами промышленности, влияют на эритроциты (дать химический состав), вызывая образование патологических производных гемоглобина. К физиологическим производным гемоглобина относятся (дать условия оксигенации и деоксигенации):

  1. Оксигемоглобин - образуется в легких в процессе оксигенации ге­моглобина. Кровь, содержащая оксигемоглобин, имеет ярко-красный (алый) цвет. Раство­ры окрашенных веществ обладают способностью избирательно задержи­вать, поглощать лучи определенной длины, образуя в соответствующем месте солнечного спектра темные полосы. Темные полосы называются спектром поглощения. Гемоглобин и все его производные имеют специфические спектры поглощения, что может служить целям диагностики. Спектр поглощения оксигемоглобина - две тонкие темные полосы в желто-зеленой части спектра.

  2. Карбгемоглобин (дать участие гемоглобина в переносе углекислого газа) - образуется в венозной крови, которая благодаря его содержанию имеет темно-вишневый цвет. Специфического спектра поглощения не имеет, т.к. СО2 присоединяется не к гему, а к глобину гемоглобина. При исследовании венозной крови спектроско­пическим методом обычно наблюдают спектр поглощения гемоглобина (т.к. НЬС02 легко разрушается) - одна широкая темная полоса в желто-зеленой части спектра.

К патологическим производным гемоглобина относятся:

  1. Карбоксигемоглобин (НbCO) - образуется при соединении гемоглобина с угарным газом (CО). Этот процесс возможен в 2-4% в нормальных условиях. СО в норме образуется при распаде гемоглобина, когда образуется вердоглобин, при расщеплении метинового мостика. СН группа (метиновая группа) при этом не теряется, а превращается в СО. СО может активировать гуанилатциклазу, вызывая последующие события в клетке-мишени. Карбоксигемоглобин - это прочное соединение, слабо диссоциирующее, не способное присоединить кислород. Кроме этого в присутствии карбоксигемоглобина затрудняется деоксигенация оксигемоглобина (эффект Холдена). При концентрации угарного газа во вдыхаемом воздухе около 0,1% 50% гемоглобина связывается с ним за 1/130 секунды (гемогло­бин имеет более высокое сродство к угарному газу, чем к кисло­роду). Различают три степени отравления угарным газом. Первая проявляется сильными головными болями, одышкой и тошнотой. Вторая к проявлениям первой дополнительно характеризуется мышечной слабостью и наличием алых пятен на лице. Третья степень – кома (ярко-алое лицо, цианоз конечностей, температура 38-40С, приступы судорог). Есть атипичные формы – молниеносная, когда резко падает АД, бледность (белая асфиксия). Возможно хроническое отравление угарным газом. Если примерно 70% гемоглобина связано с угарным газом, наступает гибель организма от гипоксии. Кровь имеет сиреневый от­тенок ("цвет брусничного сока"). Спектр поглощения карбоксигемоглобина очень похож на спектр пог­лощения оксигемоглобина - две тонкие темные линии в желто-зеленой части спектра, но они несколько сдвинуты к фиолетовому концу. Для более точного распознавания оксигемоглоби­на и карбоксигемоглобина к исследуемому раствору следует добавить реактив Стокса (аммиачный раствор виннокаменного железа). Так как этот реактив является сильным восстановите­лем, то при добавлении его к раствору оксигемоглобина последний восстанавливается в гемоглобин, спектр поглощения которого – одна темная линия. Спектр поглощения карбоксигемоглобина при добавлении реактива Стокса не меняется, т.к. на это соединение он не оказывает воздействия. Это используется в судебно-медицинской практике для диагностики различия между смертью от механической асфиксии (удушения) и отравления угарным газом.

  2. МетгемоглобинbОН) – может образовываться в нормальных условиях (1-2%) при утилизации оксида азота. Метгемоглобин в физиологических условиях участвует не только в утилизации оксида азота, но также способен связывать цианиды, реактивируя дыхательные ферменты. Цианиды образуются постоянно в физиологических условиях (в результате взаимодействия альдегидов, кетонов и альфа-оксикислот с циан-гидрином, а также в результате метаболизма нитрилов). В утилизации цианидов также принимает участие фермент родоназа (печень, почки и надпочечники). Этот фермент катализирует присоединение к цианидам серы, что ведет к образованию тиоцианатов – в 200раз менее токсичных веществ. Метгемоглобин способен связывать сероводород, азит натрия, роданиды, фтористый натр, формиат, мышьяковистую кислоту и другие яды. Метгемоглобин участвует в устранении избытка пероксида водорода, разрушая его до воды и атомарного кислорода с превращением в оксигемоглобин. В норме метгемоглобин не накапливается в эритроцитах, т.к. в них существует система его восстановления – ферментная (НАДФ-редуктаза, или диафораза – 75%), неферментная (витамин С – 12-16% и восстановленный ГЛТ – 9-12%).

В большом количестве метгемоглобин образуется под воздействием сильных окис­лителей (бертолетова соль, красная кровяная соль, нитробензол, анилин, многие органические растворители и др.). При этом железо гемоглобина окисляется в трехвалентное. К третьей валентности прочно присоединяется атомарный кислород и образуется гидроксильная группа. Такой гемоглобин теряет способность переносить кислород, в организме наступает кислородное голодание. Кровь приобретает коричне­вый цвет. Так как метгемоглобин может выделяться через почки, то моча тоже приобретает темную окраску. Спектр поглощения метгемоглобина - три полоски, две тонкие в жел­товато-зеленой части спектра и одна в красной части.

Воздействие вредных факторов ОС вызывает усиление ПОЛ. Показано, что выхлопные газы усиливают ПОЛ, снижают сократительную способность миокарда, увеличивают метгемоглобино- и карбоксигемоглобинообразование. Непосредственный эффект выхлопных газов проявляется образованием больших количеств карбоксигемоглобина. При этом усугубляется процесс гипоксии тканей

Литература – основная и дополнительная

  1. Авцын А.П. и соавт. «Микроэлементозы человека – этиология, классификация, органопатология» - М., Медицина, 1990

  2. Васнецова А.Л., Гладышев Г.П. – «Экологическая и биофизическая химия», 1989

  3. «Экология и питание» - Москва, 1998

  4. Бреслер В.М. «Организм защищается от загрязнений» - Интернет, file://A:\Ксенобиотик. htm

  5. Кулаков В.И., Кирбасова Н.П, Пономарева Л.П., Лопатина Т.В. «Экологические проблемы репродуктивного здоровья» – жур. Акушерствои гинекология, № 1, 1993, С. 12-14

  6. Ширяева А.С., Петров А.М. «Некоторые социальные и медико-биологические аспекты экологии и генетики человека» – жур. Вестник АМН СССР, № 4, 1990 – С. 52-57

  7. Устиненко А.Н., Эглите М.Э., Иванова И.А. «Экология и здоровье» – жур. Фельдшер и акушерка, №7, 1991 – С. 9-12

  8. Молдавская Г.К. «О формировании экологического сознания студентов-медиков» – жур. Гигиена и санитария, №7, 1988 – С. 23-27

  9. Проблемы экологии в патфизиологии» - Сб.тр., Алматы, 1995