Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
152
Добавлен:
16.03.2016
Размер:
300.54 Кб
Скачать

§21. Деформации твердого тела

Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердо­го тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.

Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации, которые сохраня-

39

ются в теле после прекращения действия внешних сил, называются пластическими (или остаточными). Деформации реально­го тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать уп­ругие деформации, что мы и будем де­лать.

В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходя­щим деформациям растяжения или сжа­тия и сдвига.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы f1 и F2 (F1=F2=F), в результате чего длина стер­жня меняется на величину l. Естествен­но, что при растяжении l положительно, а при сжатии — отрицательно.

Сила, действующая на единицу пло­щади поперечного сечения, называется на­пряжением:

=F/S. (21.1)

Если сила направлена по нормали к по­верхности, напряжение называется нор­мальным, если же по касательной к по­верхности — тангенциальным.

Количественной мерой, характеризую­щей степень деформации, испытываемой телом, является его относительная дефор­мация. Так, относительное изменение дли­ны стержня (продольная деформация)

=l/l, (21.2) относительное поперечное растяжение

(сжатие)

' = d/d, где d -— диаметр стержня.

Деформации  и ' всегда имеют раз­ные знаки (при растяжении l положи­тельно, a Ad отрицательно, при сжатии l отрицательно, a Ad положительно). Из опыта вытекает взаимосвязь  и ':

'=-,

где  — положительный коэффициент, за­висящий от свойств материала, называе­мый коэффициентом Пуассона.

Английский физик Р. Гук (1635— 1703) экспериментально установил, что для малых деформаций относительное уд­линение  и напряжение  прямо про­порциональны друг другу:

 = E, (21.3)

где коэффициент пропорциональности Е называется модулем Юнга. Из вы­ражения (21.3) видно, что модуль Юнга определяется напряжением, вызывающим относительное удлинение, равное единице. Из формул (21.2), (21.3) и (21.1) вы­текает, что

где k — коэффициент упругости. Выраже­ние (21.4) также задает закон Гука, со­гласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением пред­ставляется в виде диаграммы напряже­ний, которую мы качественно рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость  (), установленная Гуком, выполняется

40

лишь в очень узких пределах до так на­зываемого предела пропорциональности (п). При дальнейшем увеличении напря­жения деформация еще упругая (хотя за­висимость  () уже не линейна) и до пре­дела упругости (у) остаточные деформа­ции не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекра­щения действия силы, изобразится не кри­вой ВО, а параллельной ей — CF. Напря­жение, при котором появляется заметная остаточная деформация (~=0,2 %), назы­вается пределом текучести (т) — точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести (или об­ластью пластических деформаций). Мате­риалы, для которых область текучести значительна, называются вязкими, для ко­торых же она практически отсутствует — хрупкими. При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется преде­лом прочности (p).

Диаграмма напряжений для реальных твердых тел зависит от различных факто­ров. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.

Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, кото­рая равна работе, совершаемой внешними силами при деформации:

где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до l. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадра­ту деформации (l)2.

Деформацию сдвига проще всего осу­ществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу Ftau (рис.36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига опре­деляется из формулы

tg = s/h,

где s — абсолютный сдвиг параллельных слоев тела относительно друг друга; h расстояние между слоями (для малых уг­лов tg).

41

Контрольные вопросы

• Что такое момент инерции тела?

• Какова роль момента инерции во вращательном движении?

• Какова формула для кинетической энергии тела, вращающегося вокруг неподвижной оси, и как

ее вывести?

• Что называется моментом силы относительно неподвижной точки? относительно неподвижной

оси? Как определяется направление момента силы?

• Выведите и сформулируйте уравнение динамики вращательного движения твердого тела.

• Что такое момент импульса материальной точки? твердого тела? Как определяется направле­ние момента импульса?

• В чем заключается физическая сущность закона сохранения момента импульса? В каких систе­мах он выполняется? Приведите примеры.

• Каким свойством симметрии пространства обусловливается справедливость закона сохранения момента импульса?

• Сопоставьте основные уравнения динамики поступательного и вращательного движений, прокомментировав их аналогию.

• Что такое свободные оси (главные оси инерции)? Какие из них являются устойчивыми?

• Что такое гироскоп? Каковы его основные свойства?

• Сформулируйте закон Гука. Когда он справедлив?

• Дайте объяснение качественной диаграммы напряжений (). Что такое пределы пропорцио­нальности, упругости и прочности?

• Каков физический смысл модуля Юнга?

Задачи

4.1. С одного уровня наклонной плоскости одновременно начинают скатываться без скольжения сплошные цилиндр и шар одинаковых масс и одинаковых радиусов. Определить: 1) отноше­ние скоростей цилиндра и шара на данном уровне; 2} их отношение в данный момент време­ни. [1) 14/15; 2) 14/15]

4.2. К ободу однородного сплошного диска радиусом R = 0,5 м приложена постоянная касатель­ная сила F=100 H. При вращении диска на него действует момент сил трения М = 2Н•м. Определить массу т диска, если известно, что его угловое ускорение к постоянно и равно 12 рад/с2. [32 кг]

4.3. Через неподвижный блок в виде однородного сплошного цилиндра массой m= 1 кг перекину­та невесомая нить, к концам которой прикреплены тела массами m1=1 кг и m2=2 кг. Прене­брегая трением в оси блока, определить: 1) ускорение грузов; 2) отношения T2/T1 сил на­тяжения нити. [ 1) 2,8 м/с2; 2) 1,11 ]

4.4. Скорость вращения колеса, момент инерции которого 2 кг•м2, вращающегося при торможении равнозамедленно, за время t=1 мин уменьшилась от n1=300 об/мин до n2=180 об/мин. Определить: 1) угловое ускорение  колеса; 2) момент М силы торможения; 3) работу силы торможения. [1) 0,21 рад/с2; 2) 0,42 Н•м; 3) 630 Дж ]

4.5. Человек массой m = 80 кг, стоящий на краю горизонтальной платформы массой М = 100 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой n1 = 10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а человека — точеч­ной массой, определить, с какой частотой n2 будет тогда вращаться платформа. [26 мин-1 ]

4.6. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа 621 Дж. Длина стержня 2 м, площадь поперечного сечения 1 мм2, модуль Юнга для алюминия E = 69 ГПа. { l/l=[2A/(ESl)]=0,03}

* С. Пуассон (1781 — 1840) — француз­ский ученый.

** Т. Юнг (1773—1829) — английский ученый.

Соседние файлы в папке Трофимова Курс физики