Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ядро.docx
Скачиваний:
11
Добавлен:
16.03.2016
Размер:
230.04 Кб
Скачать

Ядерная оболочка

Ядерная оболочка (tegmentum nucleare), или кариолемма, состоит из внешней ядерной мембраны (m. nuclearis externa) ивнутренней мембраны оболочки (m. nucle-aris interna), разделенных перинуклеарным пространством (рис. 4.26). Ядерная оболочка содержит многочисленные ядерные поры (pori nucleares).

Из многих свойств и функциональных нагрузок ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы, ограничивающего свободный доступ в ядро крупных агрегатов биополимеров, регулирующего транспорт макромолекул между ядром и цитоплазмой.

Мембраны оболочки ядра в морфологическом отношении не отличаются от остальных внутриклеточных мембран. В общем виде оболочка ядра может быть представлена как полый двухслойный мешок, отделяющий содержимое ядра от цитоплазмы.

Наружная мембрана оболочки ядра, непосредственно контактирующая с цитоплазмой клетки, имеет ряд структурных особенностей, позволяющих отнести ее к собственно мембранной системе эндоплазматической сети: на ней со стороны гиалоплазмы расположены многочисленные полирибосомы, а сама наружная мембрана может прямо переходить в мембраны эндоплаз-матической сети. Одной из важных функций оболочки ядра следует считать ее участие в создании внутриядерного порядка - в фиксации хромосомного материала в трехмерном пространстве ядра. В интерфазе часть хроматина структурно связана с внутренней мембраной оболочки ядра. Эта связь опосредуется с помощью фиброзной ядерной пластинки (ламины), с которой связываются фибриллы хроматина.

Наиболее характерными структурами оболочки ядра являются ядерные поры. Они образуются за счет слияния наружной и внутренней мембран обо-

Рис. 4.26. Строение ядра интерфазной клетки:

1 - оболочка ядра (наружная и внутренняя мембраны, перинуклеарное пространство); 2 - комплекс ядерной поры; 3 - гетерохроматин; 4 - эухроматин; 5 - ядрышко; 6 - межхроматиновые гранулы РНК. Электронная микрофотография, увеличение 12 000

лочки ядра. Формирующиеся при этом округлые сквозные отверстия поры имеют диаметр около 90 нм. Эти отверстия в ядерной оболочке заполнены сложно организованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют комплексом ядерной поры (complexus pori nuclearis). Последний имеет октагональную симметрию. По границе отверстия в наружной и внутренней мембранах оболочки ядра располагаются по 8 белковых субъединиц, которые составляют белковые кольца ядерной поры (наружное и внутреннее). От наружного кольца поры в сторону цитоплазмы отходят длинные филаменты. От внутреннего кольца поры в глубь ядра также отходят филаменты, образуя структуру, подобную корзинке.

Комплекс ядерной поры в функциональном отношении представляет собою сложную систему, которая активно участвует не только в рецепции транспортируемых макромолекул (белков и нуклеопротеидов), но и собственно в актах их переноса (транслокации), при которых используется АТФ. В состав каждого комплекса ядерной поры входит несколько сотен различных белков.

Число ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетках, тем больше пор в оболочке ядра. Так, у эритробластов (клеток-предшественников ядерных эритроцитов) низших позвоночных животных во время интенсивного синтеза и накопления гемоглобина в оболочке ядра обнаруживаются около 30 пор на

1 мкм2 поверхности. После того как эти процессы заканчиваются, в ядрах зрелых клеток - эритроцитов - прекращается синтез ДНК и РНК и количество пор в оболочке ядра снижается до 5 на 1 мкм2 поверхности. В оболочке ядра зрелых сперматозоидов поры не обнаруживаются. В среднем в оболочке ядра соматической клетки обнаруживается несколько тысяч поро-вых комплексов.

4.3. ВОСПРОИЗВЕДЕНИЕ КЛЕТОК 4.3.1. Клеточный цикл и его регуляция

Делению клеток предшествует редупликация хромосом вследствие синтеза ДНК. Это правило является общим для про- и эукариотических клеток. Время существования клетки от одного деления до другого называется клеточным циклом (cyclus cellularis).

Во взрослом организме высших позвоночных клетки различных тканей и органов имеют неодинаковую способность к делению. Встречаются популяции клеток, полностью потерявшие свойство делиться. Это большей частью специализированные, дифференцированные клетки (например, зернистые лейкоциты крови). В организме есть постоянно обновляющиеся ткани - различные эпителии, кроветворные ткани. В таких тканях существует часть клеток, которые постоянно делятся, заменяя стареющие или погибающие клетки (например, клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга). Многие клетки, не размножающиеся в обычных условиях, приобретают вновь это свойство при процессах репаратив-ной регенерации органов и тканей. В гистогенезе большинство клеток после определенного числа делений переходит в гетеросинтетическую интерфазу, которая включает время роста, дифференцировки, функционирования, старения и смерти. В целом это характеризует жизненный цикл клетки.

При изучении клеточного цикла встречаются как диплоидные (2 с), так и тетраплоидные (4 с) и интерфазные клетки с промежуточным количеством ДНК. Это объясняется особенностями цикла размножения клеток. Весь клеточный цикл состоит из четырех отрезков времени: собственно митоза (М), пресинтети-ческого (G1), синтетического (S) и постсинтетического (G2) периодов интерфазы (рис. 4.27).

Рис. 4.27. Клеточный цикл (схема). Пояснения в тексте

В G1-периоде, наступающем сразу после деления, клетка имеет диплоидное содержание ДНК в ядре (2 с). После деления в периоде G1 в дочер-

них клетках общее содержание белков и РНК вдвое меньше, чем в исходной родительской клетке. В периоде G1наблюдается рост клеток главным образом за счет накопления клеточных белков, что обусловлено увеличением количества РНК в клетке, и подготовка клетки к синтезу ДНК.

Обнаружено, что подавление синтеза белка или иРНК в G1-периоде предотвращает наступление S-периода, так как в течение G1-периода происходят синтезы ферментов, необходимых для образования предшественников ДНК (например, нуклеотидфосфокиназ), ферментов метаболизма РНК и белка. При этом резко повышается активность ферментов, участвующих в энергетическом обмене.

В следующем, S-периоде, происходит удвоение количества ДНК в ядре и соответственно удваивается число хромосом. В ядрах разных клеток, находящихся в S-периоде, можно обнаружить разные количества ДНК - от 2 до 4 с, что отражает постепенное накопление ДНК по мере прохождения клеткой синтетического периода клеточного цикла. S-период является узловым в клеточном цикле. Без синтеза ДНК неизвестно ни одного случая вступления клеток в митотическое деление.

Единственным исключением является второе деление созревания половых клеток в мейозе, когда между двумя делениями нет синтеза ДНК.

В S-периоде уровень синтеза РНК возрастает соответственно увеличению количества ДНК, достигая своего максимума в С2-периоде.

Постсинтетический (G2) период называется также премитотическим. В данном периоде синтезируется иРНК, необходимая для митоза. Среди синтезирующихся в это время белков особое место занимают тубулины - белки митотического веретена.

В конце G2-периода или в митозе по мере конденсации митотических хромосом синтез РНК резко снижается и полностью прекращается во время митоза. Синтез белка во время митоза понижается до 25 % исходного уровня и затем в последующих периодах достигает своего максимума в G2-периоде, в общем повторяя характер синтеза РНК.

В растущих тканях растений и животных всегда есть клетки, которые находятся вне цикла. Такие клетки принято называть клетками G0-периода. Это клетки, которые после митоза не вступают в пресинтетический период (G1). Именно они представляют собой так называемые покоящиеся, временно или окончательно переставшие размножаться клетки. В некоторых тканях такие клетки могут находиться длительное время, не изменяя особенно своих морфологических свойств: они сохраняют способность к делению. Это, например, камбиальные клетки (стволовые в кроветворной ткани). Чаще потеря (хотя бы и временная) способности делиться сопровождается специализацией и дифференцировкой. Такие дифференцирующиеся клетки выходят из цикла, но в особых условиях могут снова входить в цикл. Например, большинство клеток печени находится в G0-периоде; они не синтезируют ДНК и не делятся. Однако при удалении части печени у экспериментальных животных многие клетки начинают подготовку к митозу, переходят к синтезу ДНК и могут митотически делиться. В других случаях, например в эпидермисе кожи, после выхода клетки из цикла

размножения они дифференцируются, выполняют свои защитные функции, а затем погибают (ороговевшие клетки покровного эпителия). Многие клетки теряют полностью способность возвращаться в митотический цикл. Так, например, нейроны головного мозга и кардио-миоциты постоянно находятся в G0-периоде клеточного цикла (до смерти организма).

Регуляция вхождения и выхода клеток из клеточного цикла находится под контролем особой системы белковых факторов. Было обнаружено множество факторов роста (ФР), стимулирующих клетки к размножению, к пролиферации. Так, например, ФР из тромбоцитов стимулирует размножение клеток соединительной ткани, гормон эритро-поэтин вызывает размножение пред-

шественников эритроцитов, гормон прогестерон стимулирует пролиферацию клеток молочной железы и т. п.

Разные ФР передают сигналы на синтез специальных внутриклеточных белков, образующих каскад протеинкиназ (фосфорилаз), связанных с запуском клеточного цикла.

В состав этих белков, факторов, стимулирующих митоз, входит комплекс, состоящий из двух субъединиц: регуляторной (белок циклин) и каталитической (циклин-зависимая протеиназа).

У млекопитающих в реализации всего клеточного цикла участвуют 9 различных циклинов и 7 циклин-зависимых киназ (ЦЗК). При этом для перехода от одного периода клеточного цикла к другому используются разные циклины (D, E, A, B и др.) и разные ЦЗК (рис. 4.28). Так, например, переход от интерфазного ядра в G2-периоде непосредственно к митозу определяется фактором, состоящим из циклинов А/В и протеин-зависимой киназы 1.

Деление клеток: митоз

Митоз (mitosis), кариокинез, или непрямое деление, - универсальный способ деления любых эукариотических клеток. При этом редуплицирован-ные и конденсированные хромосомы переходят в компактную форму мито-тических хромосом, образуется веретено деления, участвующее в сегрегации и переносе хромосом (ахроматиновый митотический аппарат), происходят расхождение хромосом к противоположным полюсам клетки и деление тела клетки (цитокинез, цитотомия). Процесс непрямого деления клеток приня-

Рис. 4.29. Митоз клетки (схема):

1 - интерфаза; 2 - профаза; 3 - метафаза; 4 - анафаза; 5 - телофаза; 6 - ранняя интерфаза

то подразделять на несколько основных фаз: профаза, метафаза, анафаза, телофаза (рис. 4.29).

Профаза. После окончания S-периода количество ДНК в интерфазном ядре равно 4 с, так как произошло удвоение хромосомного материала. Однако морфологически регистрировать удвоение числа хромосом в этом периоде не всегда удается. Это связано с тем, что в профазе сестринские хромосомы тесно соприкасаются и взаимно спирализуются одна относительно другой. Тем не менее в профазе каждая из хромосом двойная, что является результатом их редупликации в S-периоде клеточного цикла. Позднее хромосомы в каждой такой паре начинают обособляться, раскручиваться. Сестринские хромосомы в митозе отчетливо выявляются в конце профазы, когда видно, что общее их число в начинающей делиться клетке равно 4 n. Следовательно, уже в начале профазы хромосомы состояли из двух сестринских хромосом, или хроматид. Число их (4 n) в профазе точно соответствует количеству ДНК (4 с).

Параллельно конденсации хромосом в профазе происходят исчезновение и дезинтеграция ядрышек в результате инактивации рибосомных генов в зоне ядрышковых организаторов.

Одновременно с этим в середине профазы начинается разрушение ядерной оболочки: исчезают ядерные поры, оболочка распадается сначала на фрагменты, а затем на мелкие мембранные пузырьки.

В это время меняются и структуры, связанные с синтезом белка. Происходит уменьшение количества гранулярной эндоплазматической сети, она распадается на короткие цистерны и вакуоли, число рибосом на ее мембранах резко падает. Значительно (до 25 %) редуцируется число полисом как на мембранах, так и в гиалоплазме, что является признаком общего снижения уровня синтеза белка в делящихся клетках.

Второе важнейшее событие при митозе тоже происходит во время профазы - это образование веретена деления. В профазе репродуцировавшиеся в S-периоде центриоли начинают расходиться к противоположным полюсам клетки. К каждому полюсу отходит по двойной центриоли, или диплосоме. По мере расхождения диплосом начинают формироваться микротрубоч-

ки, отходящие от периферических участков одной из центриолей каждой диплосомы.

Сформированный в метафазе аппарат деления в животных клетках имеет веретеновидную форму и состоит из нескольких зон: двух зон центросфер с центриолями внутри них и промежуточной между ними зоны волокон веретена. Во всех этих зонах имеется большое число микротрубочек (рис. 4.30).

Микротрубочки в центральной части этого аппарата, в собственном веретене деления, так же как микротрубочки центросфер, возникают в результате полимеризации тубулинов в зоне центриолей. Эти микротрубочки достигают кине-тохоров, расположенных в области центромерных перетяжек хромосом, и связываются с ними. В веретене деления различают два типа микротрубочек: идущие от полюса к центру веретена и хромосомные, соединяющие хромосомы с одним из полюсов.

Рис. 4.30. Строение митотического веретена (схема):

1 - хромосомы; 2 - клеточный центр; 3 - центриолярные микротрубочки; 4 - кинетохорные микротрубочки

Метафаза занимает около трети времени всего митоза. Во время метафа-зы заканчивается образование веретена деления, а хромосомы выстраиваются в экваториальной плоскости веретена, образуя так называемую экваториальную (метафазную) пластинку хромосом, или материнскую звезду. К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна разделяющая их щель. Последним местом, где контакт между хрома-тидами сохраняется, является центромер (первичная перетяжка).

Анафаза. Хромосомы все одновременно теряют связь друг с другом в области центромер и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам клетки. Скорость движения хромосом равномерная, она может достигать 0,2-0,5 мкм/мин. Анафаза - самая короткая стадия митоза (несколько процентов от всего времени), но за это время происходит ряд событий. Главными из них являются обособление двух идентичных наборов хромосом и перемещение их в противоположные концы клетки. Расхождение хромосом по направлению к полюсам происходит одновременно с расхождением самих полюсов.

Показано, что расхождение хромосом связано с укорочением (деполимеризацией) микротрубочек в районе кинетохоров хромосом и с работой

белков-транслокаторов, перемещающих хромосомы. Дополнительное расхождение полюсов в анафазе обеспечивается за счет скольжения относительно друг друга межполюсных микротрубочек, которое обеспечивается работой другой группы белков-транслокаторов.

Телофаза начинается с остановки разошедшихся диплоидных (2 n) наборов хромосом (ранняя телофаза) и завершается, когда возникает реконструкция нового интерфазного ядра (поздняя телофаза, ранний G1-период) и происходит разделение исходной клетки на две дочерние (цитокинез, цитотомия). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки - к полюсу, теломерные - к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в новый G1-период клеточного цикла.

Важное событие телофазы - разделение клеточного тела - цитото-мия, или цитокинез, который происходит путем образования перетяжки в результате впячивания плазматической мембраны внутрь клетки. При этом в подмембранном слое цитоплазмы располагаются сократимые элементы типа актиновых миофиламентов, ориентированные циркулярно в зоне экватора клетки. Сокращение филаментов приводит к впячиванию плазматической мембраны в области этого кольца, что завершается разделением клетки на две.