Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Bilet_87

.doc
Скачиваний:
18
Добавлен:
15.03.2016
Размер:
49.66 Кб
Скачать

Билет 87

  1. Организация генома прокариот.

Основной чертой молекулярной организации прокариот является отсутствие в их клетках (или вирионах - вирусных частицах, в случае вирусов) ядра. Геном прокариот построен очень компактно. Количество некодирующих последовательностей нуклеотидов минимально, интроны редки. У прокариот для кодирования белков часто используются две или все три рамки считывания одной и той же последовательности нуклеотидов гена, что повышает кодирующий потенциал их генома без увеличения его размера.  В прокариотических клетках отсутствуют постоянные двумембранные и одномембранные органоиды: пластиды и митохондрии, эндоплазматическая сеть, аппарат Гольджи и их производные. Их функции выполняют мезосомы – складки плазматической мембраны. В цитоплазме фотоавтотрофных прокариот имеются разнообразные мембранные структуры, на которых протекают реакции фотосинтеза. Иногда их называют бактериальными хроматофорами.

Многие механизмы регуляции экспрессии генов, использующиеся у эукариот, никогда не встречаются у прокариот Простота строения генома прокариот объясняется их упрощенным жизненным циклом, на протяжении которого прокариотические клетки не претерпевают сложных дифференцировок, связанных с глобальным переключением экспрессии одних групп генов на другие, или тонким изменением уровней их экспрессии, что имеет место в онтогенезе эукариот.

Нуклеоид – ДНК – содержащая зона клетки прокариот, соответствует одной кольцевой 2цепочечной молекуле ДНК , эта ДНК , называемая бактериальной хромосомой невелика по размеру и связана с очень большим количеством белков. Деление нуклеоида просходит после реплики ДНК.

Наряду с ДНК прокариотические клетки имеют внехромосомные факторы- плазмиды, являющиеся кольцевыми 2цепочечными молекулами ДНК , содержащими большое количество генов и придающими клетке новые признаки, например делают их устойчивыми к антибиотикам.

Ген – экспрессируемая единица генома, включающая единицу транскрипции и регуляторные участки. 2. Гены прокариот непрерывны. 3. В процессе транскрипции участвует только один фермент РНК- полимераза. 4. У прокариот 3 вида регуляторных участков ДНК:- промоторный для связи с РНК- полимеразой, 10-35 н.п. левее сайта инициации; - терминаторный отвечает за завершение транскрипции и высвобождение транскрипта; - операторный сцеплен с промотором (или перекрывается с ним). 5. Принцип построения генома единый для всех прокариот;6. Регуляция экспрессии генов происходит, главным образом, на этапе начала транскрипции, но может быть и на других этапах экспрессии генов.

Хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Длина ее составляет примерно 4,7 млн. нуклеотидных пар (п.н.), или ~ 1,6 мм. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название OriC). Бактериальная хромосома удваивается перед делением клетки, и сестринские копии распределяются по дочерним клеткам с помощью мезосомы. Репликация ДНК идет в две стороны от точки OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны.

Особенности генома прокариот:

1. Ген – экспрессируемая единица генома, включающая единицу транскрипции и регуляторные участки

2. Гены прокариот непрерывны

3. В процессе транскрипции участвует только один фермент РНК- полимераза

У прокариот 3 вида регуляторных участков ДНК:

- промоторный для связи с РНК- полимеразой, 10-35 н.п. левее сайта инициации

- терминаторный отвечает за завершение транскрипции и высвобождение транскрипта - операторный сцеплен с промотором (или перекрывается с ним)

5. Принцип построения генома единый для всех прокариот

6. Регуляция экспрессии генов происходит, главным образом, на этапе начала транскрипции, но может быть и на других этапах экспрессии генов

Регуляторные участки – на расстоянии 50-75 н.п. левее сайта инициации (иногда еще дальше) Их продукты регуляторные белки: репрессор при негативной, активатор при позитивной регуляции. Регуляторный белок связывается с операторным участком. При негативной регуляции эта связь помеха для РНК-полимеразы– экспрессии нет. При позитивной регуляции активатор способствует экспрессии генов

  1. Общие понятия о генетичеком материале и его свойствах. Роль ядра и цитоплазмы в наследственности и изменчивости.

Генетический материал":любой материал растительного, животного, микробного или иного происхождения, содержащий функциональные единицы наследственности. Во-первых обладает способностью к самовоспроизведению, Во-вторых сохранять постоянной свою организацию. В-третьих материал должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в меняющихся условиях. Только в случае соответствия указанным требованиям материальный субстрат наследственности и изменчивости может обеспечить длительность и непрерывность существования живой природы и ее эволюцию.Ядро — компонент который несет информацию. Оно может находиться двух состояниях: покоя — интерфазы_ж_Дбления — митоза или мейоза. Интерфазное ядро представляет собой круглое "образование" с многочисленными глыбками белкового вещества, названного хроматином. Выделяет два типа хроматина: гетерохроматин и эухроматин. Первый из в интерфазном ядре под световым, второй — только под электронным микроскопом. Гетерохроматин и ухроматин выполняют разные функции в генетическом биосинтеза белков. изучение ядра под эектрнным микроскопом по­казало, что хроматин состоит из очень тонких нитей- хромосом. в них заложена основная часть - гнетической информации индивидуума.

Аутэколо́гия — раздел экологии, изучающий взаимоотношения организма с окружающей средой. В отличие от демэкологии и синэкологии, сосредоточенных на изучении взаимоотношений со средой популяций и экосистем, состоящих из множества организмов, исследует индивидуальные организмы на стыке с физиологией.

Демэколо́гия — раздел общей экологии, изучающий динамику численности популяций, внутрипопуляционные группировки и их взаимоотношения. В рамках демэкологии выясняются условия, при которых формируются популяции. Демэкология описывает колебания численности различных видов под воздействием экологических факторов и устанавливает их причины, рассматривает особь не изолированно, а в составе группы таких же особей, занимающих определённую территорию и относящихся к одному виду.

Синэколо́гия — раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов. Часто синэкологию рассматривают как науку о жизнибиоценозов, то есть многовидовых сообществ животных, растений и микроорганизмов.

  • Биоценозы – многовидовые сообщества,которые образуют биологические макросистемы более высокого ранга

  • Биогеоценозы – акад., Сукачев 1942

система или исторически сложившееся единство биоценоза (растения. животные, м/организмы) и неживой среды их обитания.

  • Экологическая система (экосистема) – Тенсли, англ. одновременно

совокупность живых организмов с их местообитанием

Академик Вернадский обосновал принципы единения всего живого и неживого во Вселенной, один из них «Ни один вид не может жить в созданных им отходах» (загрязнение окр. среды – экологические болезни).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]