Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект по физике-механика.docx
Скачиваний:
348
Добавлен:
14.03.2016
Размер:
582.65 Кб
Скачать

§ 3. Закон сохранения энергии

Рассмотрим систему материальных точек массами т1, т2 ... ,тn и движущихся со скоростями 1,2 ...,n.ПустьF'1,F'2, ... ,F'n — равнодействующие внутренних консервативны сил, F1,F2...,Fn равнодействующие внешних сил, а f1,f2...,fn равнодействующие внешних консервативных сил. Второй закон Ньютона для каждого из n тел механической системы:

, ,

………………

,

Умножим каждое из уравнений на соответствующее перемещение и, учитывая, что , получим:

, ,

………………

,

Сложив эти уравнения, получим:

(3.1)

.

где dЕк – кинетическая энергия системы.

Второй член равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т. е. равен элементарному приращению потенциальной энергииdEпот системы.

Правая часть равенства (3.1) задает работу внешних неконсервативных сил, действующих на систему. Таким образом, имеем

(3.2)

При переходе системы из состояния 1 в какое-либо состояние 2:

т. е. изменение полной механической энергии системы при переходе из одного состояния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (3.2) следует, что:

,

откуда

, (3.3)

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (3.3) представляет собой закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.

Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости. Рис. 3.1 поясняет решение этой задачи.

Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде:

Обратим внимание на то, что сила натяжения нити всегда перпендикулярна скорости тела; поэтому она не совершает работы.

При минимальной скорости вращения натяжение нити в верхней точке равно нулю и, следовательно, центростремительное ускорение телу в верхней точке сообщается только силой тяжести:

Из этих соотношений следует:

Центростремительное ускорение в нижней точке создается силами инаправленными в противоположные стороны:

Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно:

.

Прочность нити должна, очевидно, превышать это значение.

Механика твёрдого тела

§ 1. Момент инерции

Моментом инерции системы (твёрдого тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В качестве примера найдём момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси.

Разобьём цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним r+dr. Момент инерции каждого полого цилиндра:

(т.к. dr << r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm – масса всего элементарного цилиндра; его объём . Если – плотность материала, то или. Тогда момент инерции сплошного цилиндра:

но т.к. – объём цилиндра, то его масса, а момент инерции:

Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции JC относительно параллельной оси, проходящей через центр масс C тела, сложенную с произведением массы m тела на квадрат расстояния a между осями:

Значения моментов инерции некоторых тел приведены в табл. 1 (тепа считаются однородными, т — масса тепа).

Таблица 1

№ п.п.

Тело

Положения оси

Момент инерции

Полый тонкостенный цилиндр радиусом R

Ось симметрии

Сплошной цилиндр или диск радиуса R

То же

Прямой тонкий стержень длиной l

Ось перпендикулярна стержню и проходят через его середину

Прямой тонкий стержень длиной l

Ось перпендикулярна стержню и проходит через его конец

Шар радиусом R

Ось проходят через центр шара