Bilety / 30
.docx30.Определение, свойства и вычисление не собственного интеграла, случай бесконечного промежутка. Примеры.
Свойства
1) Если интеграл сходиться, С – некоторое число, то интеграл также сходиться и
2) Если интегралы и сходятся, то интеграл только сходится и
3) Если функции и интегрируемы при , то
4) Пусть функция непрерывна при , функция определена, непрерывна и имеет непрерывную производную на промежутке конечном или бесконечном, где <
Тогда
_____________________________________________________________________
Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуоси и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла при называется несобственным интегралом функции f(x) от a до и обозначается . Итак, по определению, . Если этот предел существует и конечен, интеграл называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся. Примеры: 1. ; этот предел не существует; следовательно, исследуемый интеграл расходится. 2. ; следовательно, интеграл сходится и равен . Аналогично интегралу с бесконечным верхним пределом интегрирования определяется интеграл в пределах от до b : и в пределах от до :. В последнем случае f(x) определена на всей числовой оси, интегрируема по любому отрезку; c - произвольная (собственная) точка числовой оси; интеграл называется сходящимся, если существуют и конечны оба входящих в определение предела. Пользуясь свойством аддитивности определённого интеграла, можно показать, что существование конечных пределов и их сумма не зависят от выбора точки c. Примеры: 3. . Интеграл сходится. 4. следовательно, интеграл сходится и равен . Очевидно следующее утверждение, которое мы сформулируем для интеграла с бесконечным верхним пределом: сходится тогда и только тогда, когда для любого c, удовлетворяющего неравенству c > a, сходится интеграл (док-во: так как при a < c < b по свойству аддитивности , и от b не зависит, то конечный предел при для интеграла в левой части существует тогда и только тогда, когда существует конечный предел для интеграла в правой части равенства).
Примеры
Рассмотрим два классических примера:
Пример 1
Вычислить несобственный интеграл или установить его расходимость.
Для наглядности я построю чертеж, хотя, еще раз подчеркиваю, на практике строить чертежи в данном задании не нужно.
Подынтегральная функция непрерывна на полуинтервале , значит, всё нормально и несобственный интеграл можно вычислить «штатным» методом.
Применение нашей формулы и решение задачи выглядит так:
То есть, несобственный интеграл расходится, и площадь заштрихованной криволинейной трапеции равна бесконечности.
В рассмотренном примере у нас простейший табличный интеграл и такая же техника применения формулы Ньютона-Лейбница, как в определенном интеграле. Но применятся эта формула под знаком предела. Вместо привычной буквы «динамической» переменной выступает буква «бэ». Это не должно смущать или ставить в тупик, потому что любая буква ничем не хуже стандартного «икса».
Если Вам непонятно почему при , то это очень плохо, либо Вы не понимаете простейшие пределы (и вообще не понимаете, что такое предел), либо не знаете, как выглядит график логарифмической функции. Во втором случае посетите урок Графики и свойства элементарных функций.
При решении несобственных интегралов очень важно знать, как выглядят графики основных элементарных функций!
Чистовое оформление задания должно выглядеть примерно так:
“ Подынтегральная функция непрерывна на Несобственный интеграл расходится. “
! При оформлении примера всегда прерываем решение, и указываем, что происходит с подынтегральной функцией. Этим мы идентифицируем тип несобственного интеграла.
Если Вам встретится интеграл вроде , то с вероятностью, близкой к 100%, можно сказать, что это опечатка. Здесь подынтегральная функция не является непрерывной на промежутке интегрирования , она терпит разрыв в точке . Теоретически и практически допустимо вычислить два несобственных интеграла на полуинтервалах и , а потом их сложить, но со здравой точки зрения такая вещь выглядит довольно абсурдно. Опечатка.
Иногда вследствие той же опечатки несобственного интеграла может вообще не существовать, так, например, если в знаменатель вышеуказанного интеграла поставить квадратный корень из «икс», то часть интервала интегрирования вообще не войдёт вобласть определения подынтегральной функции.
Всегда смотрим и записываем, является ли подынтегральная функция непрерывнойна интервале интегрирования.
Пример 2
Вычислить несобственный интеграл или установить его расходимость.
Выполним чертеж:
Во-первых, замечаем следующее: подынтегральная функция непрерывна на полуинтервале . Гуд. Решаем с помощью формулы :
(1) Берем простейший интеграл от степенной функции (этот частный случай есть во многих таблицах). Минус лучше сразу вынести за знак предела, чтобы он не путался под ногами в дальнейших вычислениях.
(2) Подставляем верхний и нижний пределы по формуле Ньютона-Лейбница.
(3) Указываем, что при (Господа, это уже давно нужно понимать) и упрощаем ответ.
Вот здесь площадь бесконечной криволинейной трапеции равна конечному числу! Невероятно, но факт.
Чистовое оформление примера должно выглядеть примерно так:
“ Подынтегральная функция непрерывна на