
- •Билет № 1
- •1. Биосинтез гема: субстраты и их источники, этапы синтеза, основные ферменты и коферменты, регуляция и значение процесса. Нарушения синтеза гема: порфирии.
- •2.Переваривание углеводов пищи в желудочно-кишечном тракте при участии ферментов. Транспорт моносахаров в ткани. Нарушения переваривания и всасывания углеводов.
- •3. Задача билет №2
- •1.Основные этапы катаболизма органических соединений. Общий путь катаболизма: окислительное декарбоксилирование пирувата. Строение пируватдегидрогеназного
- •2. Витамин д: синтез, образование активной формы, органы-мишени, механизм действия, биологический эффект. Белки, индуцируемые кальцитриолом.
- •3. Задача! билет №3
- •1. Полное аэробное окисление глюкозы: основные этапы, энергетический вклад и пути синтеза атф, регуляция. Челночные механизмы переноса водорода из цитоплазмы в митохондрии.
- •1.Подготовительный этап:
- •2. Биохимическая функция никотиновой кислоты.
- •3. Задача! билет №4
- •2.Особенности всасывания витамина в12 в жкт. Биохимические функции витамина в12.
- •3. Задача! билет №5
- •2.Биохимическая роль витамина е.
- •3. Задача! билет №6
- •3. Задача! билет №7
- •1.Анаэробный гликолиз: основные этапы, энергетический вклад, способ синтеза атф, субстраты-макроэрги, регенерация nad, регуляция процесса.
- •2.Витамин к: образование кофермента, биохимические функции.
- •3. Задача! билет №8
- •2.Фолиевая кислота: образование кофермента, биохимическая роль.
- •3. Задача! билет №9
- •1.Аэробный гликолиз: основные этапы, энергетический вклад, способы синтеза атф, челночные механизмы транспорта водорода в митохондрии, регуляция.
- •2. Биохимическая роль витамина в2.
- •Билет №10
- •1. Общая характеристика метаболизма кетоновых тел: источник и место синтеза, биологическая роль синтеза, энергетический вклад окисления кетоновых тел. Причины и последствия кетоза.
- •2. Биохимическая роль витамина в6.
- •3. Задача! билет №11
- •1.Пентозофосфатный путь превращения глюкозы: общая характеристика этапов, ключевая реакция, регуляция и значение процесса.
- •2.Витаминоподобные вещества и их биохимическая роль: холин, карнитин, липоевая кислота, коэнзим q.
- •3. Задача! билет №12
- •1. Гниение белков в кишечнике на примере тирозин и триптофан содержащих белков. Обезвреживание продуктов гниения в печени: этапы, ферменты, характеристика образующихся продуктов.
- •2. Оксидоредуктазы: тип реакций, классификация, коферменты. Биологическая роль оксидоредуктаз. Примеры реакций.
- •3. Задача! билет №13
- •1.Гидролиз таг в тканях и β-окисление высших жирных кислот: ход процесса, транспорт жирных кислот в митохондрии, регуляция, значение. Рассчитайте энергетический выход окисления пальмитиновой кислоты.
- •2.Биохимическая роль витамина в1.
- •3. Задача! билет №14
- •1.Синтез таг: субстраты, ферменты, особенности синтеза в печени и жировой ткани. Транспорт таг из печени в ткани, участие лп-липазы и роль инсулина.
- •2. Биохимическая роль аскорбиновой кислоты.
- •3. Задача! билет №15
- •1. Белки плазмы крови: особенности строение альбумина, функции. Белки глобулиновой фракции: примеры, функции. Гипо- и гиперпротеинемии.
- •2. Биохимическая роль витамина в5.
- •3. Задача! билет №16
- •2.Адреналин: химическая природа гормона, синтез, влияние адреналина на обмен веществ, механизмы действия адреналина на клетки-мишени.
- •3. Задача! билет №17
- •2. Биохимическая роль витамина а.
- •3. Задача! билет №18
- •1.Переваривание белков пищи: участие ферментов. Транспорт аминокислот в ткани.
- •2.Иммуноглобулины: химическая природа, место синтеза, строение, классификация, функции в организме.
- •3. Задача! билет №19
- •2.Особенности метаболизма в эритроцитах: значение гликолиза, пентозофосфатного пути окисления глюкозы, образование 2,3-дифосфоглицерата, образование и обезвреживание активных метаболитов кислорода.
- •3. Задача! билет №20
- •1.Транскрипция: ход процесса, субстраты, источники энергии, ферменты. Посттранскрипционный процессинг пре-рнк различных видов. Альтернативный сплайсинг.
- •2.Реакции трансаминирования в обмене аминокислот.
- •3. Задача! билет №21
- •1.Декарбоксилирование аминокислот и образование биогенных аминов. Примеры. Роль биогенных аминов в организме.
- •2.Синтез глюкозы: ход процесса, регуляция, значение.
- •Регуляция:
- •3. Задача! билет №22
- •1.Синтез гликогена: ход процесса, регуляция, значение.
- •2.Биохимические механизмы уничтожения чужеродных агентов в фагоцитирующих клетках.
- •3. Задача! билет №23
- •1.Мобилизация (распад) гликогена: ход процесса, регуляция, значение, нарушения.
- •2.Роль микроэлементов в обмене веществ (на примере основных микроэлементов).
- •3. Задача! билет №24
- •1.Синтез желчных кислот: характеристика ключевой реакции, регуляция. Первичные желчные кислоты. Конъюгаты желчных кислот с аминокислотами. Роль желчных кислот.
- •2.Обмен железа в организме: поступление экзогенного железа, транспорт в ткани, использование.
- •Распределение в орг-ме:
- •3. Задача! билет №25
- •1.Кортизол: химическая природа, место синтеза, регуляция синтеза и секреции, основные этапы синтеза, транспорт по крови, механизм действия на клетки-мишени, биологический эффект.
- •2. Биологические функции кортикостероидов
- •2.Строение, основная функция и метаболизм лпнп. Модифицированные лпнп и их роль в атерогенезе.
- •3. Задача! билет №26
- •1.Строение, основная функция и метаболизм лпвп. Фермент лхат: катализируемая реакция, активаторы. Механизмы антиатерогенного эффекта лпвп.
- •3. Задача! билет №27
- •1. Ферменты: химическая природа, строение, кофакторы и коферменты, этапы ферментативного катализа, специфичность ферментов, активность ферментов и факторы, влияющие на скорость реакции.
- •2. Пути образования и механизм токсического действия аммиака. Универсальный механизм обезвреживания аммиака.
- •3. Задача! билет №28
- •2.Пути образования и механизм токсического действия аммиака. Особенности обезвреживания аммиака в печени, почках, головном мозге.
- •3. Задача! билет №29
- •1.Синтез пуриновых нуклеотидов: субстраты, основные этапы, регуляция, запасные пути синтеза.
- •2.Глюкагон: химическая природа, место синтеза, регуляция секреции, механизм действия на клетки-мишени, биологический эффект.
- •3. Задача! билет №30
- •2.Особенности обмена фенилаланина. Причины фенилкетонурии.
- •3. Задача! билет №31
- •1.Репликация: ход процесса, субстраты, источники энергии, ферменты.
- •2. Катаболизм пуриновых нуклеотидов: характеристика процесса. Гиперурикемия. Подагра и синдром Леша-Нихена: биохимические основы патологии.
- •3. Задача! билет №32
- •2.Особенности метаболизма тирозина. Нарушения метаболизма тирозина: алкаптонурия, альбинизм.
- •3. Задача! билет №33
- •1.Трансляция: ход процесса, субстраты, источники энергии, ферменты.
- •1 Этап трансляции:
- •2.Особенности метаболизма метионина: образование s-аденозилметионина и его использование, регенерация метионина из гомоцистеина.
- •3. Задача! билет №34
- •2.Синтез соляной кислоты в желудке, регуляция процесса при участии гистамина. Инактивация гистамина. Роль соляной кислоты в процессах переваривания пищи.
- •Роль нcl:
- •3. Задача! билет №36
- •1.Основные биохимические механизмы гемостаза: противосвертывающая система крови (ингибиторы свертывания крови и антикоагулянтная система протеина с).
- •2.Инсулин: химическая природа, место синтеза, регуляция секреции, механизм действия на клетки-мишени, биологический эффект.
- •3. Задача! билет №37
- •1.Основные биохимические механизмы гемостаза: фибринолитическая система крови.
- •2.Вазопрессин: химическая природа, место синтеза, регуляция секреции, механизм действия на клетки-мишени, биологический эффект.
- •3. Задача! билет №38
- •1.Особенности метаболизма кардиомиоцитов: энергообразование, основные субстраты окисления, значение аэробных и анаэробных процессов. Биохимические маркеры повреждения миокарда.
- •1. Окислительное фосфорилирование
- •2. Гликолиз
- •3. Креатинфосфат
- •4. Миоаденилаткиназная реакция
- •2.Система ренин-ангиотензин: принцип работы, регуляция секреции ренина, клетки-мишени ангиотензина, биологический эффект.
- •3. Задача! билет №39
- •3. Задача! билет №40
- •1.Биохимические механизмы детоксикации в печени: характеристика этапов гидроксилирования и конъюгации. Участие ферментов и конъюгатов различной природы.
- •2.Кальцитонин: химическая природа, место синтеза, регуляция секреции, механизм действия на клетки-мишени, биологический эффект.
- •3. Задача! билет №41
- •1.Влияние этанола на обмен углеводов и липидов. Метаболизм и обезвреживание этанола.
- •2.Паратгормон: химическая природа, место синтеза, регуляция секреции, механизм действия на клетки-мишени, биологический эффект.
- •1. Синтез и секреция птг
- •3. Задача! билет №42
- •1.Липопротеины плазмы крови: строение частиц, классификация, основные функции. Метаболизм хиломикронов, лпонп, лпнп, лпвп. Типы дислипопротеинемий (примеры): причина нарушений, характерные признаки.
- •2.Классификация ферментов: принцип деления ферментов на классы, катализируемые реакции, примеры реакций для каждого класса ферментов.
- •3. Задача! билет №43
- •2.Обмен галактозы. Причины галактоземии и ее последствия.
- •3. Задача! билет №44
- •1.Особенности строения и метаболизм гликозамингликанов и протеогликанов межклеточного матрикса соединительной ткани. Причина мукополисахаридозов.
- •2.Метаболическая регуляция липолиза: цикл Рэндла (взаимосвязь липолиза и синтеза глюкозы).
- •3. Задача! билет №45
- •1.Биохимические основы развития атеросклероза.
- •2.Обмен фруктозы. Биохимические основы использования фруктозы как заменителя глюкозы для больных сахарным диабетом. Нарушения обмена фруктозы.
- •3. Задача! билет №46
- •2.Биохимические основы жирового перерождения печени.
- •3. Задача! билет №47
- •1.Биохимические основы профилактики и лечения атеросклероза.
- •2.Обмен кальция и фосфора: роль кальция и фосфора, регуляция обменных процессов.
- •3. Задача! билет №48
- •1.Взаимосвязь углеводного и липидного обменов в абсорбтивный период. Биохимические основы алиментарного ожирения. Примеры генетических факторов ожирения.
- •2.Химический состав желчи. Мицеллы желчи. Биохимические основы развития желчно-каменной болезни.
- •3. Задача! билет №49
- •1.Эйкозаноиды как «тканевые» гормоны: классификация, синтез, структура, механизм действия, биологический эффект. Лекарственные препараты – ингибиторы фосфолипазы а2 и циклоксигеназы.
- •2.Использование ферментов в заместительной и комплексной терапии. Иммобилизованные ферменты.
- •3. Задача! билет №50
- •2.Гормоны-производные помк: актг, меланоцитстимулирующий гормон, эндорфины (механизм образования гормонов из предшественника, клетки-мишени, биологический эффект).
- •3. Задача!
2.Химический состав желчи. Мицеллы желчи. Биохимические основы развития желчно-каменной болезни.
Основной компонент жёлчи — жёлчные кислоты (67 % — если исключить из рассмотрения воду). Половина — первичные жёлчные кислоты: холевая и хенодезоксихолевая, остальная часть — вторичные: дезоксихолевая, литохолевая, аллохолевая иурсодезоксихолевая кислоты.
В состав мицелл желчи входят также желчные кислоты и фосфолипиды ( в основном это фосфатидилхолин ), именно они обеспечивают растворимость холестерола в водной фазе желчи. Жёлчные кислоты в жёлчи находятся в виде конъюгатов (соединений) с глицином и таурином: гликохолевой, гликохенодезоксихолевой, таурохолевой и других так называемых парных кислот. Жёлчь содержит значительное количество ионов натрия икалия, вследствие чего она имеет щелочную реакцию, а жёлчные кислоты и их конъюгаты иногда рассматривают как «жёлчные соли».
Желчь из печени поступает в желчный пузырь, где происходит ее концентрирование за счет всасывания в стенку пузыря части воды. Одновременно происходит и всасывание части желчных кислот, поэтому в пузырной желчи происходит увеличение относительной концентрации холестерола по сравнению с концентрацией желчных кислот. Если указанный процесс приводит к нарушению структуры мицелл, то создаются условия для перехода холестерола из мицеллярной, устойчивой в растворе формы, в жидкокристаллическую форму, которая в воде неустойчива. При прогрессировании этого процесса в дальнейшим происходит переход холестерола в твердокристаллическую форму, что и приводит к образованию холестериновых камней.
В ряде случаев желчь может генерировать кристаллы холестерола еще до ее поступления в желчный пузырь, что наблюдается при нарушении желчеобразования непосредственно в печени. По-видимому, это связано или с большим избытком холестерола, поступающего в желчь, или же с снижением объема синтеза желчных кислот. Способность желчи генерировать конкременты, в том числе и преимущественно холестериновой природы, получила название литогенности желчи (от слова litos - камень).
3. Задача! билет №49
БИЛЕТ №49
1.Эйкозаноиды как «тканевые» гормоны: классификация, синтез, структура, механизм действия, биологический эффект. Лекарственные препараты – ингибиторы фосфолипазы а2 и циклоксигеназы.
Эйкозаноиды большая группа медиаторов, обладающих широким спектром биологической активности. Предшественником эйкозаноидов является арахидоновая кислота (20:4) (см. Жирные кислоты и нейтральные жиры) — полиненасыщенная жирная кислота, входящая в состав фосфолипидов плазматических мембран.
Биосинтез. Эйкозаноиды образуются почти во всех клетках организма. Биосинтез начинается с гидролиза фосфолипидов плазматической мембраны под действием фосфолипазы A2 [1]. Активность этого фермента строго контролируется гормонами и другими биорегуляторами, сопряжёнными с G-белками. Свободная арахидоновая кислота также является биологически активным соединением. Однако гораздо большее значение имеют её метаболиты: простагландины, простацикпины, тромбоксаны и лейкотриены, которые носят групповое название эйкозаноиды (от греч. eikosi — 20).
К эйкозаноидам ведут два главных пути биосинтеза. Первый инициируется простагландин-синтазой, обладающей свойствами циклооксигеназы и пероксидазы [2], второй — липоксигеназой [3].
Простагландин-синтаза [2] катализирует двухстадийную реакцию превращения арахидоновой кислоты в простагландин H2. Последующие реакции, катализируемые различными ферментами, приводят к образованию простагландинов, простациклинов и тромбоксанов.
Окисление полиеновых кислот при участии липоксигеназы приводит к образованию гидроперокси- и гидроксипроизводных жирных кислот, из которых путём дегидратации и за счёт различных реакций переноса образуются лейкотриены. На схеме приведены структурные формулы отдельных представителей разных групп эйкозаноидов.
Биологическая активность эйкозаноидов. Эйкозаноиды обладают чрезвычайно разносторонней физиологической активностью. Они служат вторичными мессенджерами гидрофильных гормонов, контролируют сокращение гладкомышечной ткани (кровеносных сосудов, бронхов, матки), принимают участие в высвобождении продуктов внутриклеточного синтеза (гормонов, HCl, мукоидов), оказывают влияние на метаболизм костной ткани, периферическую нервную систему, иммунную систему, передвижение и агрегацию клеток (лейкоцитов и тромбоцитов), являются эффективными лигандами болевых рецепторов.
Эйкозаноиды действуют как локальные биорегуляторы путём связывания с мембранными рецепторами в непосредственной близости от места их синтеза как на синтезирующие их клетки (аутокринное действие), так и на соседние клетки (паракринное действие). В некоторых случаях их действие опосредовано цАМФ и цГМФ.
Метаболизм. Эйкозаноиды инактивируются в течение нескольких секунд в результате восстановления двойных связей и окисления гидроксигрупп. Благодаря быстрому разрушению дальность действия эйкозаноидов ограничена.
• ингибиторы фосфолипазы А2 (гидрокортизон, преднизолон, метилпреднизолон)
• ингибиторы циклооксигеназы (нестероидные противовоспалительные средства: мефенамовая кислота, напроксен, бутадион, индометацин, ибупрофен, ацетилсалициловая кислота, диклофенак натрия, парацетамол)