Контрольная работа
1. Решить задачу линейного программирования графическим методом:
ƒ= x1 + ax2→max
x
1
+2x2
≤ 10
3x1 + 2x2 ≤ 18
x1 – x2 ≥ - b
cx1 – x2 ≤ 8c + 3
|
N |
a |
b |
c |
N |
a |
b |
c |
N |
a |
b |
c |
N |
a |
b |
c |
|
1 |
5 |
7 |
2 |
6 |
-1/4 |
10 |
2 |
11 |
-5/6 |
8 |
1/4 |
16 |
-3/4 |
13/2 |
½ |
|
2 |
1 |
6 |
3 |
7 |
4 |
12 |
½ |
12 |
3 |
13/2 |
2 |
17 |
3/2 |
7 |
2 |
|
3 |
-1 |
6 |
1/8 |
8 |
5/4 |
9 |
1/3 |
13 |
1 |
9 |
1 |
18 |
3 |
6 |
1 |
|
4 |
5 |
9 |
1 |
9 |
-1 |
6 |
½ |
14 |
-1/3 |
10 |
2 |
19 |
4 |
8 |
¾ |
|
5 |
3/4 |
7 |
1 |
10 |
5/6 |
7 |
1 |
15 |
7/4 |
6 |
3 |
20 |
-1 |
15/2 |
1/3 |
2. Решить задачу линейного программирования графическим методом:
Для всех вариантов x1≥ 0 x2≥0
|
1 x1 +6x2≤ 12, 5x1+8x2 ≤ 40 5,5x1+2x2 ≤ 22 ƒ |
2 -x1+2x2≤ 2 3x1+2x2≤ 6
ƒ |
x1-2x2 ≤ 2 -2x1+x2≤ 2 x1+ x2 ≤ 3 ƒ |
4 3x1 +5x2≤11, 4x1+x2 ≤ 8
ƒ |
|
5. x2 ≤ 2 ƒ |
6 3x1 +2x2≤8, x1+4 x2 ≤ 10 ƒ |
7 5x1 - 2x2≤3, x1+ x2 ≤ 1 ƒ
|
8.
-4x1+3x2≤ 12 3x1- 4x2 ≤ 12 ƒ
|
|
9 2x1 +20x2≤ 20, 4x1+8x2 ≤ 16, 12x1+3x2 ≤ 24,
ƒ |
1 2x1 +5x2≤ 20, 6x1+7x2 ≤ 42, 10x1+3x2 ≤ 30,
ƒ
|
1 x1 -2x2≤ 2, -2x1+x2 ≤ 2 x1+x2 ≤ 3
ƒ
|
1 2x1 +5x2≤ 20, 6x1+5x2 ≤ 30 x1-2x2 ≤ 3
ƒ
|
|
1 x1 +4x2≤ 12, x1+2x2 ≤ 10, 2x1+x2 ≤ 12,
ƒ |
1 8x1 +2x2≤ 89, x1≤ 22, 5x2 ≤ 90,
ƒ
|
1 3x1 -2x2≤ 3, -5x1- 4x2 ≤ -10, 2x1+ x2 ≤ 5,
ƒ
|
1 x1 +4x2≤ 12, 2x1+3x2 ≤ 12, x1 ≤ 4,
ƒ
|
|
17. 3x1+7x2 ≤21, 4x1+5x2 ≤ 20,
ƒ
|
18. x1+x2 ≤ 6, 2x1+x2 ≤ 10,
ƒ
|
19. 3,5x1+2x2 ≤ 14, 11x1+3x2 ≤ 33,
ƒ
|
20. 3x1+5x2 ≤ 15, 10x1+6x2 ≤ 30,
ƒ
|
|
2 3x1 +11x2≤ 33, 3x1+4x2 ≤24, 20x1+4x2 ≤ 40,
ƒ
|
2 2x1 + x2≤ 6, x1+2x2 ≤10, 3x1- x2 ≤ 3,
ƒ
|
23. 2x1+ x2 ≤ 6, x1- x2 ≤ 2,
ƒ
|
2 31 +11x2≤ 33, 7x1+6x2 ≤42, 8x1+2x2 ≤ 24,
ƒ
|
|
25. 6x1+7x2 ≤42, 10x1+3x2 ≤ 30,
ƒ
|
26. x1+2x2 ≤10, 2x1+ x2 ≤ 12,
ƒ
|
27. 2x1+3x2 ≤12, x1≤ 4,
ƒ |
28. x2 ≤2,
ƒ
|

.
(
x ) = 7x1
+4x2→max
.
(
x ) = x1
+4x2→max
3.
(
x ) = x1
+2x2→max
.
(
x ) = x1
+4x2→max
3x1
+2x2≤5,
(
x ) = x1
+x2→max
.
(
x ) = 3x1
+4x2→max
.
(
x ) = x1
-2x2→max
x1+2x2
≤ 10
(
x ) = x1
+x2→max
.
(
x ) = x1
+3x2→max
0.
(
x ) = 4x1
+4x2→max
1.
(
x ) = x1
+2x2→max
2.
(
x ) = 4x1
+2x2→max
3.
(
x ) =3x1
+8x2→max
4.
(
x ) = 4x1
+3x2→max
5.
(
x ) = 3x1
- x2→max
6.
(
x ) = 4x1+12x2→max
2x1
+18x2≤
18,
(
x ) =2x1
+4x2→max
x1
+3x2≤
15,
(
x ) =x1
+4x2→max
2x1
+2x2≤
12,
(
x ) =6x1
+2x2→max
2x1
+7x2≤
14,
(
x ) =3x1
+2x2→max
1.
(
x ) =3x1
+6x2→max
2.
(
x ) =3x1
+4x2→max
4x1
+ 5x2≤
20,
(
x ) =3x1
+x2→max
4.
(
x ) =3x1
+6x2→max
2x1
+5x2≤
20,
(
x ) =7x1
+4x2→max
x1
+ 4x2≤
12,
(
x ) =3x1
+2x2→max
x1
+4x2≤
12,
(
x ) =4x1
+12x2→max
3x1
+2x2≤
5,
(
x ) =x1
+x2→max