
- •От автора
- •Раздел 1. Проблема измерения в психологии
- •1. 1. Понятие об измерении
- •1. 2. Особенности измерения в психологии
- •1. 3. Шкалы измерений
- •Раздел 2. Основные статистические понятия
- •2. 1. Генеральная и выборочная совокупности
- •2. 2. Переменная величина
- •2. 3. Уровни значимости
- •2. 4. Достоверность результатов исследования
- •Раздел 3. Подготовка данных к математической обработке
- •3. 1. Протоколирование данных
- •3. 2. Составление сводных таблиц (табулирование данных)
- •3. 3. Определение квантилей
- •3. 4. Графическое представление результатов
- •Раздел4. Меры центральной тенденции
- •4. 1. Мода
- •4. 2. Медиана
- •4. 3. Среднее арифметическое значение
- •4. 4. Среднее геометрическое значение
- •Задачи по теме Задача 4.1
- •Задача 4.2
- •Задача 4. 3
- •Раздел 5. Меры изменчивости (разнообразия, вариативности) исследуемого признака
- •5. 1. Лимиты (пределы) разнообразия
- •5. 2. Размах вариаций
- •5. 3. Среднее отклонение
- •5. 4. Дисперсия
- •5. 5. Среднеквадратичное (стандартное) отклонение
- •5. 6. Коэффициент вариации
- •Задачи по теме Задача 5. 1
- •Задача 5.2
- •Раздел 6. Распределения переменных величин
- •6.1. Нормальное распределение
- •6. 1. 1. Основные понятия
- •6. 1. 2. Коэффициент асимметрии
- •6. 1. 3. Коэффициент эксцесса
- •6. 1. 4. Критерий хи-квадрат (c2)
- •6. 1. 5. Критерий Колмогорова – Смирнова (l)
- •6. 2. Равномерное распределение
- •6. 3. Биномиальное распределение
- •6. 4. Распределение Пуассона
- •Задачи по теме Задача 6. 1
- •Задача 6. 2
- •Задача 6. 3
- •Задача 6. 4
- •Раздел 7. Меры различий
- •7. 1. Постановка проблемы
- •7. 2. Непараметрический критерий qРозенбаума
- •7. 4. Критерий Стьюдента
- •7.5. Критерий Фишера
- •7. 6. Критерий j*-угловое преобразование Фишера
- •7.7. Использование критерия χ2 Пирсона и критерия λ Колмогорова для оценки различий между двумя выборками
- •Задачи по теме Задача 7. 1
- •Задача 7. 2
- •Задача 7.3
- •Задача 7.4
- •Задача 7.5
- •Задача 7.7
- •Раздел 8. Меры связи
- •8. 1. Постановка проблемы
- •8. 2. Представление данных
- •8. 3. Коэффициент корреляции Фехнера
- •8. 4. Коэффициент корреляции Пирсона
- •8. 5. Коэффициент ранговой корреляции Спирмена
- •8.6. Коэффициент ранговой корреляции Кендалла (тау Кендалла, t)
- •8.7. Дихотомический коэффициент корреляции (j)
- •8. 8. Точечный бисериальный коэффициент корреляции (rpb)
- •8. 9. Рангово-бисериальный коэффициент корреляции (rrb)
- •8. 11. Матрицы корреляций
- •Задачи по теме Задача 8.1
- •Задача 8. 2
- •Задача 8. 3
- •Задача 8. 4
- •Задача 8. 5
- •Задача 8. 6
- •Задача 8. 7
- •Задача 8. 8
- •Задача 8. 9
- •Задача 8. 10
- •Задача 8.16
- •Задача 8.18
- •Раздел 9. Меры зависимости
- •9.1. Основные понятия
- •9.2. Анализ линейной зависимости методом наименьших квадратов
- •9.4. Множественная регрессия
- •Задачи по теме Задача 9. 1
- •Задача 9. 2
- •Раздел 10. Меры влияния
- •10. 1. Сущность проблемы
- •10. 2. Непараметрические меры влияния
- •10.2.1. Критерий знаков
- •10.2.2. Критерий Вилкоксона
- •10.3. Однофакторный дисперсионный анализ
- •10. 4. Двухфакторный дисперсионный анализ
- •Задачи по теме Задача 10. 1
- •Задача 10. 2
- •Раздел 11. Элементы многомерной статистики
- •11.1. Основные понятия
- •11.2. Кластерный анализ
- •11.2.1. Функции расстояния
- •11.2.2. Меры сходства
- •11.2.3. Выбор числа кластеров
- •Динамическое программирование
- •Целочисленное программирование
- •11.2.4. Методы кластеризации
- •11.2.5. Представление данных
- •11.3. Факторный анализ
- •11.3.1. Основные принципы факторного анализа
- •11.3.2. Основные методы, используемые в факторном анализе
- •Метод главных факторов
- •Центроидный метод
- •Метод минимальных остатков
- •Метод максимума правдоподобия
- •Групповой метод
- •11.3.3. Выбор числа факторов и оценка их значений
- •11.3. 4. Представление результатов факторного анализа
- •Ответы на задачи
- •Список рекомендуемой литературы
- •Дополнительная
- •Приложение статистические таблицы
- •Критические значения коэффициента асимметрии (As), используемого для проверки гипотезы о нормальности распределения
- •Критические значения показателя эксцесса (Ex), используемого для проверки нормальности распределения
- •Теоретические частоты 8-классового нормального распределения ("шаг" 1 s)
- •Теоретические частоты 16-классового нормального распределения ("шаг" 0,5 s)
- •Значения z Пирсона и соответствующие им теоретические накопленные частоты
- •Стандартные значения хи-квадрат
- •Уровень значимости различий между экспериментальным и теоретическим распределениями по критерию λ Колмогорова – Смирнова
- •Критические значения критерия q Розенбаума
- •Критические значения критерия u Манна-Уитни для уровня значимости 0,95
- •Стандартные значения критерия Стьюдента
- •Стандартные значения критерия Фишера, используемые для оценки достоверности различий между двумя выборками
- •Величины угла j в радианах для разных процентных долей (угловое преобразование Фишера)
- •Критические значения коэффициентов корреляции Пирсона и Спирмена
- •Критические значения коэффициента t Кендалла
- •Число пар значений, достаточное для статистической значимости коэффицентов корреляции Пирсона и Спирмена
- •Критические значения дихотомического коэффициента корреляции j
- •Границы критической области для критерия знаков
- •Критические значения критерия т Вилкоксона
11.3.3. Выбор числа факторов и оценка их значений
Существует ряд способов определения числа факторов, с которыми связаны исследуемые переменные величины. Наиболее надежный из них – определение вкладов F1, F2 ..., Fm в общую дисперсию. Обычно, если сумма вкладов первых m факторов составляет 90 или 95%, дальнейший анализ прекращают.
Минимальное число факторов, вызывающих корреляцию переменных, можно определить по значениям общностей (диагональных элементов корреляционной матрицы). Существуют различные способы предварительной оценки общностей, но ни один из них не имеет исчерпывающего теоретического обоснования. Эмпирически показано, что в среднем на каждый фактор должно приходиться 4-5 переменных.
Для оценки значений факторов обычно используют множественный регрессионный анализ, реже – другие методы. Мерой точности оценки значений фактора является коэффициент множественной корреляции между фактором и нагружаемыми его переменными.
11.3. 4. Представление результатов факторного анализа
В результате факторного анализа, независимо от использованного метода, вычисляются две группы показателей:
а) факторные веса, отражающие относительный вклад каждого из факторов в суммарную дисперсию (напомним, что факторные веса могут варьировать от 0 до 1 и закономерно убывают для каждого последующего фактора);
б) факторные нагрузки (коэффициенты при факторах), которые отражают степень связи каждого из n исследуемых параметров с тем или иным фактором. Оптимальным способом представления данных является матрица упорядоченных факторных нагрузок, пример которой приводится в табл. 11.4.
В рассмотренном примере несколько десятков испытуемых были протестированы на предмет некоторых черт характера и темперамента. Тестирование проводилось с использованием тестов Айзенка, Шмишека и ЧХТ, по которым определялось 18 отдельных характеристик испытуемых.
Можно видеть, что при упорядочении факторных нагрузок по каждому фактору (упорядочение производится от максимальной факторной нагрузки до минимальной) 18 исследованных характеристик группируются по пяти факторам (более корректно сказать – нагружают пять факторов), имея различную степень связи с каждым из них. В факторном анализе в первую очередь принято учитывать нагрузки, большие 0,5, а малые нагрузки (меньшие 0,25) вообще не учитываются. По данным таблицы видно, что первые шесть индивидных характеристик (нейротизм, импульсивность, тревожность, циклотимность, сила нервной системы (НС) по торможению и подвижность нервных процессов) нагружают первый фактор (a1 > 0,5), причем сила НС по торможению нагружает этот фактор с отрицательным, а остальные черты – с положительным знаком. Пять следующих характеристик нагружают второй, три черты – третий, три – четвертый и только одна характеристика – пятый фактор. В то же время можно видеть, что один и тот же параметр может нагружать два или даже три фактора, хотя эти дополнительные нагрузки относительно невелики.
Что касается явления, когда разные параметры нагружают один и тот же фактор с разным знаком, то это явный признак того, что они отрицательно коррелируют между собой.
Таблица 11.4
Черта характера или темперамента испытуемого |
Факторы | ||||
1 |
2 |
3 |
4 |
5 | |
Нейротизм |
0,781 |
|
0,395 |
|
|
Импульсивность |
0,779 |
|
|
|
|
Тревожность |
0,727 |
|
|
|
|
Циклотимность |
0,727 |
|
|
|
-0,292 |
Сила НС по торможению |
-0,580 |
-0,444 |
|
|
|
Подвижность нервных процессов |
0,522 |
|
0,427 |
|
|
Эмоциональная лабильность |
|
0,788 |
|
|
|
Экстраверсия |
|
0,768 |
|
|
|
Дистимность |
|
-0,742 |
|
|
|
Гипертимность |
|
0,704 |
|
0,334 |
|
Демонстративность |
|
0,530 |
|
0,311 |
-0,437 |
Сензитивность |
|
0,259 |
0,753 |
|
|
Чувствительность нервной системы |
|
|
0,685 |
|
|
Педантичность |
|
0,459 |
0,558 |
|
|
Сила НС по возбуждению |
|
|
|
0,676 |
|
Развитие 2-й сигнальной системы |
|
|
|
0,622 |
|
Уровень притязаний |
0,277 |
0,338 |
|
0,569 |
|
Искренность высказываний |
|
|
|
|
-0,731 |
Несмотря на то, что в приведенном примере исследованы характеристики индивида, имеющие, в основном, отношение к эмоциональной сфере, можно видеть, что природа (можно сказать, глубинная сущность) этих психологических признаков неоднородна (следует напомнить, что разные факторы по определению не коррелируют друг с другом). В то же время одна из характеристик (имеется в виду искренность или ложность высказываний), которая в некоторых тестовых методиках формирует «шкалу лжи», вообще оказалась не связанной с характеристиками эмоциональной сферы.
Кроме матриц упорядоченных факторных нагрузок, иногда используется графическое выражение результатов факторного анализа. В данном случае факторы на графике представлены осями координат (например, x = F1, y = F2; x = F2, y = F3 и т. д.), а исследуемые переменные – точками. Расположение точек на графике соответствует степени тяготения (величине факторной нагрузки) к тому или иному фактору. Более детальную информацию по этому вопросу можно получить в соответствующих источниках (например, К. Иберла, 1980; Г. Харман, 1972), которые фигурируют в перечне рекомендуемой литературы.