Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lupandin_V_I_Matematicheskie_metody_v_psikhologi.doc
Скачиваний:
586
Добавлен:
12.03.2016
Размер:
2.97 Mб
Скачать

11.3. Факторный анализ

Факторный анализ является одним из наиболее мощных способов анализа данных в многомерной статистике. Впервые (в начале ХХ столетия) он был использован именно для анализа результатов психологических исследований.

В данной главе не ставится цель детального изложения всевозможных методов, вариантов и модификаций факторного анализа. Использование современной компьютерной техники и готовых пакетов программ избавляет исследователя от необходимости заниматься рутинной вычислительной работой. Наша задача состоит в том, чтобы дать психологу общие представления о возможностях факторного анализа, об основных теоретических положениях, лежащих в его основе, а также интерпретации данных, получаемых в результате факторного анализа.

11.3.1. Основные принципы факторного анализа

Факторный анализ представляет собой набор моделей и методов, предназначенных для «сжатия» слишком больших массивов информации. В качестве исходного материала для факторного анализа служат матрицы корреляций между различными признаками (параметрами) исследуемых объектов. Если таких признаков достаточно много, матрица становится весьма громоздкой и работа с нею представляет большие трудности.

В основе факторного анализа лежит следующая гипотеза. Наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемых объектов, так сказать, их внешними проявлениями. На самом же деле существуют внутренние (скрытые, не наблюдаемые непосредственно) характеристики, число которых невелико и которые определяют значения наблюдаемых параметров. Эти внутренние характеристики называют факторами. Отдельные же наблюдаемые значения переменных являются линейными комбинациями факторов, которые не могут быть обнаружены в процессе наблюдения, но могут быть вычислены.

Задача факторного анализа состоит в том, чтобы представить наблюдаемые параметры в виде линейных комбинаций факторов и, возможно, некоторых дополнительных величин, связанных в первую очередь с ошибками измерения. Несмотря на то, что сами факторы изначально не определены, такое разложение может быть получено и, более того, значения каждого из факторов могут быть вычислены непосредственно в ходе анализа.

Задача вычисления факторов может быть интерпретирована так, что исследуемые параметры объединяются в группы, причем параметры, входящие в одну группу, связаны между собой сильной корреляционной связью, а входящие в разные группы – слабо коррелируют друг с другом.

Конечным результатом факторного анализа является получение содержательно интерпретируемых факторов, воспроизводящих матрицу коэффициентов корреляции между переменными.

Применение факторного анализа в различных областях психологических наук, показало, что определяемые факторы, как правило, хорошо интерпретируются как некоторые существенные внутренние характеристики изучаемых признаков (психологических особенностей субъектов).

В качестве начального этапа факторного анализа, так же как и других статистических методов, используется определение дисперсии каждого параметра xj (j = 1, 2, ..., n) по определенному числу повторностей i (i = 1, 2, ..., N), а также попарное вычисление корреляции между всеми изучаемыми параметрами.

В модели классического факторного анализа требуется наилучшим образом аппроксимировать корреляции, причем основная модель анализа может быть записана в следующем виде:

(11.7)

(i = 1, 2, ..., N; j = 1, 2, ..., n).

В этом выражении zj – общая нормированная дисперсия, F1, F2, ..., Fmобщие факторы (как правило m < n), Ujхарактерный фактор, который учитывает «остаточную» (связанную с различными погрешностями) дисперсию; a1, a2, ..., am, которые являются коэффициентами при факторах, называют нагрузками. Другими словами, факторная нагрузка есть не что иное как коэффициент корреляции между фактором и исследуемой переменной.

Классификация факторов:

Фактор называется генеральным, если все его нагрузки значительно отличаются от нуля, т.е. он имеет нагрузки от всех переменных.

Фактор называется общим, если хотя бы две его нагрузки значительно отличаются от нуля (т.е. он имеет нагрузки от двух и более переменных). Число высоких нагрузок переменной на общие факторы называется ее сложностью.

Одной из особенностей факторного анализа является понятие компонентов дисперсии.

Общность параметра zj, связанная с общими факторами, представляет собой часть единичной дисперсии переменной, которую можно приписать общим факторам. Она равна квадрату коэффициента множественной корреляции между переменной и общими факторами, т.е. сумме квадратов факторных нагрузок:

(11.8)

(j = 1, 2, ..., n). По сути дела, общности представляют собой диагональные элементы матрицы корреляций между исследуемыми переменными.

Характерность представляет собой часть единичной дисперсии переменной, которая не связана с общими факторами, т. е. вклад характерного фактора Uji. Характерность показывает, насколько в общих факторах учтена суммарная дисперсия параметра. Характерность можно разбить на две составляющие – специфичность и дисперсию, обусловленную ошибкой.

Специфичность – доля характерности, которая тем или иным образом связана с действительной спецификой изучаемого параметра.

Дисперсия ошибки (ненадежность) параметра связана с несовершенством измерений.

Надежность есть разница между полной дисперсией и дисперсией ошибки, т.е. представляет собой сумму общности и специфичности. Значение надежности является верхней границей общности. Разница между надежностью и общностью является мерой специфической дисперсии, присущей только одной определенной переменной. Переменные, характеризующиеся малой надежностью, в факторный анализ включаться не должны.

В математическом выражении компоненты дисперсии выглядят следующим образом:

  1. полная дисперсия: rj2 = hj2 + bj2 + ej2 = hj2 + dj2 = 1. (11.9)

  2. надежность: (11.10)

3) общность:(11.11)

4) характерность: (11.12)

5) специфичность: (11.13)

6) дисперсия ошибки: ej = 1 = . (11.14)

Более наглядно соотношения компонентов дисперсии можно представить в виде следующей схемы (табл. 11.3):

Таблица 11.3

Полная дисперсия

Общность

Характерность

Специфичность

Дисперсия

... ...

ошибки

Дисперсия

Надежность

ошибки

Некоторые исследователи не вводят предположения о существовании специфических факторов и даже факторов ошибки. При этом число общих факторов m может быть меньше или равным числу параметров n.

Кроме алгебраического представления факторной модели, иногда используются геометрические представления о корреляциях между изучаемыми параметрами как множестве векторов в многомерном пространстве. При этом задача факторного анализа состоит в попарном измерении расстояний между векторами и выявлении областей «сгущения» векторов, соответствующих отдельным факторам.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]