
- •От автора
- •Раздел 1. Проблема измерения в психологии
- •1. 1. Понятие об измерении
- •1. 2. Особенности измерения в психологии
- •1. 3. Шкалы измерений
- •Раздел 2. Основные статистические понятия
- •2. 1. Генеральная и выборочная совокупности
- •2. 2. Переменная величина
- •2. 3. Уровни значимости
- •2. 4. Достоверность результатов исследования
- •Раздел 3. Подготовка данных к математической обработке
- •3. 1. Протоколирование данных
- •3. 2. Составление сводных таблиц (табулирование данных)
- •3. 3. Определение квантилей
- •3. 4. Графическое представление результатов
- •Раздел4. Меры центральной тенденции
- •4. 1. Мода
- •4. 2. Медиана
- •4. 3. Среднее арифметическое значение
- •4. 4. Среднее геометрическое значение
- •Задачи по теме Задача 4.1
- •Задача 4.2
- •Задача 4. 3
- •Раздел 5. Меры изменчивости (разнообразия, вариативности) исследуемого признака
- •5. 1. Лимиты (пределы) разнообразия
- •5. 2. Размах вариаций
- •5. 3. Среднее отклонение
- •5. 4. Дисперсия
- •5. 5. Среднеквадратичное (стандартное) отклонение
- •5. 6. Коэффициент вариации
- •Задачи по теме Задача 5. 1
- •Задача 5.2
- •Раздел 6. Распределения переменных величин
- •6.1. Нормальное распределение
- •6. 1. 1. Основные понятия
- •6. 1. 2. Коэффициент асимметрии
- •6. 1. 3. Коэффициент эксцесса
- •6. 1. 4. Критерий хи-квадрат (c2)
- •6. 1. 5. Критерий Колмогорова – Смирнова (l)
- •6. 2. Равномерное распределение
- •6. 3. Биномиальное распределение
- •6. 4. Распределение Пуассона
- •Задачи по теме Задача 6. 1
- •Задача 6. 2
- •Задача 6. 3
- •Задача 6. 4
- •Раздел 7. Меры различий
- •7. 1. Постановка проблемы
- •7. 2. Непараметрический критерий qРозенбаума
- •7. 4. Критерий Стьюдента
- •7.5. Критерий Фишера
- •7. 6. Критерий j*-угловое преобразование Фишера
- •7.7. Использование критерия χ2 Пирсона и критерия λ Колмогорова для оценки различий между двумя выборками
- •Задачи по теме Задача 7. 1
- •Задача 7. 2
- •Задача 7.3
- •Задача 7.4
- •Задача 7.5
- •Задача 7.7
- •Раздел 8. Меры связи
- •8. 1. Постановка проблемы
- •8. 2. Представление данных
- •8. 3. Коэффициент корреляции Фехнера
- •8. 4. Коэффициент корреляции Пирсона
- •8. 5. Коэффициент ранговой корреляции Спирмена
- •8.6. Коэффициент ранговой корреляции Кендалла (тау Кендалла, t)
- •8.7. Дихотомический коэффициент корреляции (j)
- •8. 8. Точечный бисериальный коэффициент корреляции (rpb)
- •8. 9. Рангово-бисериальный коэффициент корреляции (rrb)
- •8. 11. Матрицы корреляций
- •Задачи по теме Задача 8.1
- •Задача 8. 2
- •Задача 8. 3
- •Задача 8. 4
- •Задача 8. 5
- •Задача 8. 6
- •Задача 8. 7
- •Задача 8. 8
- •Задача 8. 9
- •Задача 8. 10
- •Задача 8.16
- •Задача 8.18
- •Раздел 9. Меры зависимости
- •9.1. Основные понятия
- •9.2. Анализ линейной зависимости методом наименьших квадратов
- •9.4. Множественная регрессия
- •Задачи по теме Задача 9. 1
- •Задача 9. 2
- •Раздел 10. Меры влияния
- •10. 1. Сущность проблемы
- •10. 2. Непараметрические меры влияния
- •10.2.1. Критерий знаков
- •10.2.2. Критерий Вилкоксона
- •10.3. Однофакторный дисперсионный анализ
- •10. 4. Двухфакторный дисперсионный анализ
- •Задачи по теме Задача 10. 1
- •Задача 10. 2
- •Раздел 11. Элементы многомерной статистики
- •11.1. Основные понятия
- •11.2. Кластерный анализ
- •11.2.1. Функции расстояния
- •11.2.2. Меры сходства
- •11.2.3. Выбор числа кластеров
- •Динамическое программирование
- •Целочисленное программирование
- •11.2.4. Методы кластеризации
- •11.2.5. Представление данных
- •11.3. Факторный анализ
- •11.3.1. Основные принципы факторного анализа
- •11.3.2. Основные методы, используемые в факторном анализе
- •Метод главных факторов
- •Центроидный метод
- •Метод минимальных остатков
- •Метод максимума правдоподобия
- •Групповой метод
- •11.3.3. Выбор числа факторов и оценка их значений
- •11.3. 4. Представление результатов факторного анализа
- •Ответы на задачи
- •Список рекомендуемой литературы
- •Дополнительная
- •Приложение статистические таблицы
- •Критические значения коэффициента асимметрии (As), используемого для проверки гипотезы о нормальности распределения
- •Критические значения показателя эксцесса (Ex), используемого для проверки нормальности распределения
- •Теоретические частоты 8-классового нормального распределения ("шаг" 1 s)
- •Теоретические частоты 16-классового нормального распределения ("шаг" 0,5 s)
- •Значения z Пирсона и соответствующие им теоретические накопленные частоты
- •Стандартные значения хи-квадрат
- •Уровень значимости различий между экспериментальным и теоретическим распределениями по критерию λ Колмогорова – Смирнова
- •Критические значения критерия q Розенбаума
- •Критические значения критерия u Манна-Уитни для уровня значимости 0,95
- •Стандартные значения критерия Стьюдента
- •Стандартные значения критерия Фишера, используемые для оценки достоверности различий между двумя выборками
- •Величины угла j в радианах для разных процентных долей (угловое преобразование Фишера)
- •Критические значения коэффициентов корреляции Пирсона и Спирмена
- •Критические значения коэффициента t Кендалла
- •Число пар значений, достаточное для статистической значимости коэффицентов корреляции Пирсона и Спирмена
- •Критические значения дихотомического коэффициента корреляции j
- •Границы критической области для критерия знаков
- •Критические значения критерия т Вилкоксона
7.5. Критерий Фишера
Критерий Фишера (F) основан на том же принципе, что и критерий Стьюдента, т. е. предполагает вычисление средних значений и дисперсий в сравниваемых выборках. Чаще всего используется при сравнении между собой неравноценных по объему (разных по численности) выборок. Критерий Фишера является несколько более жестким, чем критерий Стьюдента, а потому более предпочтителен в тех случаях, когда возникают сомнения в достоверности различий (например, если по критерию Стьюдента различия достоверны при нулевом и недостоверны при первом уровне значимости).
Формула Фишера выглядит следующим образом:
(7.4)
где
и
(7.5, 7.6)
В рассматриваемой нами задаче d2 = 5,29; σz2 = 29,94.
Подставляем значения
в формулу:
В табл. ХI Приложений находим, что для уровня значимости β1 = 0,95 и ν = nx + ny – 2 = 28 критическое значение составляет 4,20.
Вывод
F = 1,32 < Fкр. = 4,20. Различия между выборками статистически недостоверны.
Примечание
При использовании критерия Фишера должны соблюдаться те же условия, что и для критерия Стьюдента (см. подраздел 7.4). Тем не менее допускается различие в численности выборок более чем в два раза.
Таким образом, при решении одной и той же задачи четырьмя различными методами с использованием двух непараметрических и двух параметрических критериев мы пришли к однозначному выводу о том, что различия между группой девушек и группой юношей по уровню реактивной тревожности недостоверны (т. е. находятся в пределах случайных вариаций). Однако могут встретиться и такие случаи, когда сделать однозначный вывод не представляется возможным: одни критерии дают достоверные, другие – недостоверные различия. В этих случаях приоритет отдается параметрическим критериям (при условии достаточности объема выборок и нормального распределения исследуемых величин).
7. 6. Критерий j*-угловое преобразование Фишера
Критерий j* Фишера предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта. Он оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект. Допускается также сравнение процентных соотношений и в пределах одной выборки.
Суть углового преобразования Фишера состоит в переводе процентных долей в величины центрального угла, который измеряется в радианах. Большей процентной доле будет соответствовать больший угол j, а меньшей доле – меньший угол, но отношения здесь нелинейные:
(7.7)
где Р – процентная доля, выраженная в долях единицы.
При увеличении расхождения между углами j1 и j2 и увеличении численности выборок значение критерия возрастает.
Критерий Фишера вычисляется по следующей формуле:
(7.8)
где j1 – угол, соответствующий большей процентной доле; j2 – угол, соответствующий меньшей процентной доле; n1 и n2 – соответственно, объем первой и второй выборок.
Вычисленное по формуле значение сравнивается со стандартным (j*ст = 1,64 для b1 = 0,95 и j*ст = 2,31 для b2 = 0,99. Различия между двумя выборками считаются статистически достоверными, если j* > j*ст для данного уровня значимости.
Пример
Нас интересует, различаются ли между собой две группы студентов по успешности выполнения достаточно сложной задачи. В первой группе из 20 человек с ней справилось 12 студентов, во второй – 10 человек из 25.
Решение
1. Вводим обозначения: n1 = 20, n2 = 25.
2. Вычисляем процентные доли Р1 и Р2: Р1 = 12 / 20 = 0,6 (60%), Р2 = 10 / 25 = 0,4 (40%).
3. В табл. XII Приложений находим соответствующие процентным долям значения φ: j1 = 1,772, j2 = 1,369.
Отсюда:
Вывод
Различия между группами не являются статистически достоверными, поскольку j* < j*ст для 1-го и тем более для 2-го уровня значимости.