Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lupandin_V_I_Matematicheskie_metody_v_psikhologi.doc
Скачиваний:
611
Добавлен:
12.03.2016
Размер:
2.97 Mб
Скачать

6. 3. Биномиальное распределение

В отличие от нормального и равномерного распределений, описывающих поведение переменной в исследуемой выборке испытуемых, биномиальное распределение используется для иных целей. Оно служит для прогнозирования вероятности двух взаимоисключающих событий в некотором числе независимых друг от друга испытаний. Классический пример биномиального распределения – подбрасывание монеты, которая падает на твердую поверхность. Равновероятны два исхода (события): 1) монета падает «орлом» (вероятность равна р) или 2) монета падает «решкой» (вероятность равна q). Если третьего исхода не дано, то p = q = 0,5 и p + q = 1. Используя формулу биномиального распределения, можно определить, например, какова вероятность того, что в 50 испытаниях (число подбрасываний монеты) последняя выпадет «орлом», предположим, 25 раз.

Для дальнейших рассуждений введем общепринятые обозначения:

n – общее число наблюдений;

i – число интересующих нас событий (исходов);

ni – число альтернативных событий;

p – эмпирически определенная (иногда – предполагаемая) вероятность интересующего нас события;

q – вероятность альтернативного события;

Pn(i) – прогнозируемая вероятность интересующего нас события i по определенному числу наблюдений n.

Формула биномиального распределения:

(6.7)

В случае равновероятного исхода событий (p = q) можно использовать упрощенную формулу:

(6.8)

Рассмотрим три примера, иллюстрирующие использование формул биномиального распределения в психологических исследованиях.

Пример 1

Предположим, что 3 студента решают задачу повышенной сложности. Для каждого из них равновероятны 2 исхода: (+) – решение и (-) – нерешение задачи. Всего возможно 8 разных исходов (2 3 = 8).

Вероятность того, что ни один студент не справится с задачей, равна 1/8 (вариант 8); 1 студент справится с задачей: P = 3/8 (варианты 4, 6, 7); 2 студента – P = 3/8 (варианты 2, 3, 5) и 3 студента – P =1/8 (вариант 1).

Студент

Варианты исходов

1

2

3

4

5

6

7

8

A

+

+

+

+

-

-

-

-

B

+

+

+

+

-

-

C

+

-

+

-

+

-

+

-

Пример 2

Предположим, 5 студентов выполняют интеллектуальный тест повышенной сложности. Правильное выполнение теста «+», неправильное «-». Каждый студент может иметь 2 возможных исхода (+ или -), причем вероятность каждого из этих исходов равна 0,5.

Студенты

1

2

3

4

5

Возможные

исходы

+

-

+

-

+

-

+

-

+

-

Необходимо определить вероятность того, что трое из 5 студентов успешно справятся с данной задачей.

Решение

Всего возможных исходов: 25 = 32.

Общее число вариантов 3(+) и 2(-) составляет

Следовательно, вероятность ожидаемого исхода равна 10/32 » 0,31.

Пример 3

Считается, что число экстравертов и интровертов в однородной группе испытуемых является приблизительно одинаковым.

Задание

Определить вероятность того, что в группе из 10 случайных испытуемых обнаружится 5 экстравертов.

Решение

  1. Вводим обозначения: p = q = 0,5; n = 10; i = 5; P10(5) = ?

  2. Используем упрощенную формулу (см. выше):

Вывод

Вероятность того, что среди 10 случайных испытуемых обнаружится 5 экстравертов, составляет 0,246.

Примечания

1. Вычисление по формуле при достаточно большом числе испытаний достаточно трудоемко, поэтому в этих случаях рекомендуется использовать таблицы биномиального распределения.

2. В некоторых случаях значения p и q можно задать изначально, но не всегда. Как правило, они вычисляются по результатам предварительных испытаний (пилотажных исследований).

3. В графическом изображении (в координатах Pn(i) = f (i)) биномиальное распределение может иметь различный вид: в случае p = q распределение симметрично и напоминает нормальное распределение Гаусса; асимметрия распределения тем больше, чем больше разница между вероятностями p и q.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]