
- •От автора
- •Раздел 1. Проблема измерения в психологии
- •1. 1. Понятие об измерении
- •1. 2. Особенности измерения в психологии
- •1. 3. Шкалы измерений
- •Раздел 2. Основные статистические понятия
- •2. 1. Генеральная и выборочная совокупности
- •2. 2. Переменная величина
- •2. 3. Уровни значимости
- •2. 4. Достоверность результатов исследования
- •Раздел 3. Подготовка данных к математической обработке
- •3. 1. Протоколирование данных
- •3. 2. Составление сводных таблиц (табулирование данных)
- •3. 3. Определение квантилей
- •3. 4. Графическое представление результатов
- •Раздел4. Меры центральной тенденции
- •4. 1. Мода
- •4. 2. Медиана
- •4. 3. Среднее арифметическое значение
- •4. 4. Среднее геометрическое значение
- •Задачи по теме Задача 4.1
- •Задача 4.2
- •Задача 4. 3
- •Раздел 5. Меры изменчивости (разнообразия, вариативности) исследуемого признака
- •5. 1. Лимиты (пределы) разнообразия
- •5. 2. Размах вариаций
- •5. 3. Среднее отклонение
- •5. 4. Дисперсия
- •5. 5. Среднеквадратичное (стандартное) отклонение
- •5. 6. Коэффициент вариации
- •Задачи по теме Задача 5. 1
- •Задача 5.2
- •Раздел 6. Распределения переменных величин
- •6.1. Нормальное распределение
- •6. 1. 1. Основные понятия
- •6. 1. 2. Коэффициент асимметрии
- •6. 1. 3. Коэффициент эксцесса
- •6. 1. 4. Критерий хи-квадрат (c2)
- •6. 1. 5. Критерий Колмогорова – Смирнова (l)
- •6. 2. Равномерное распределение
- •6. 3. Биномиальное распределение
- •6. 4. Распределение Пуассона
- •Задачи по теме Задача 6. 1
- •Задача 6. 2
- •Задача 6. 3
- •Задача 6. 4
- •Раздел 7. Меры различий
- •7. 1. Постановка проблемы
- •7. 2. Непараметрический критерий qРозенбаума
- •7. 4. Критерий Стьюдента
- •7.5. Критерий Фишера
- •7. 6. Критерий j*-угловое преобразование Фишера
- •7.7. Использование критерия χ2 Пирсона и критерия λ Колмогорова для оценки различий между двумя выборками
- •Задачи по теме Задача 7. 1
- •Задача 7. 2
- •Задача 7.3
- •Задача 7.4
- •Задача 7.5
- •Задача 7.7
- •Раздел 8. Меры связи
- •8. 1. Постановка проблемы
- •8. 2. Представление данных
- •8. 3. Коэффициент корреляции Фехнера
- •8. 4. Коэффициент корреляции Пирсона
- •8. 5. Коэффициент ранговой корреляции Спирмена
- •8.6. Коэффициент ранговой корреляции Кендалла (тау Кендалла, t)
- •8.7. Дихотомический коэффициент корреляции (j)
- •8. 8. Точечный бисериальный коэффициент корреляции (rpb)
- •8. 9. Рангово-бисериальный коэффициент корреляции (rrb)
- •8. 11. Матрицы корреляций
- •Задачи по теме Задача 8.1
- •Задача 8. 2
- •Задача 8. 3
- •Задача 8. 4
- •Задача 8. 5
- •Задача 8. 6
- •Задача 8. 7
- •Задача 8. 8
- •Задача 8. 9
- •Задача 8. 10
- •Задача 8.16
- •Задача 8.18
- •Раздел 9. Меры зависимости
- •9.1. Основные понятия
- •9.2. Анализ линейной зависимости методом наименьших квадратов
- •9.4. Множественная регрессия
- •Задачи по теме Задача 9. 1
- •Задача 9. 2
- •Раздел 10. Меры влияния
- •10. 1. Сущность проблемы
- •10. 2. Непараметрические меры влияния
- •10.2.1. Критерий знаков
- •10.2.2. Критерий Вилкоксона
- •10.3. Однофакторный дисперсионный анализ
- •10. 4. Двухфакторный дисперсионный анализ
- •Задачи по теме Задача 10. 1
- •Задача 10. 2
- •Раздел 11. Элементы многомерной статистики
- •11.1. Основные понятия
- •11.2. Кластерный анализ
- •11.2.1. Функции расстояния
- •11.2.2. Меры сходства
- •11.2.3. Выбор числа кластеров
- •Динамическое программирование
- •Целочисленное программирование
- •11.2.4. Методы кластеризации
- •11.2.5. Представление данных
- •11.3. Факторный анализ
- •11.3.1. Основные принципы факторного анализа
- •11.3.2. Основные методы, используемые в факторном анализе
- •Метод главных факторов
- •Центроидный метод
- •Метод минимальных остатков
- •Метод максимума правдоподобия
- •Групповой метод
- •11.3.3. Выбор числа факторов и оценка их значений
- •11.3. 4. Представление результатов факторного анализа
- •Ответы на задачи
- •Список рекомендуемой литературы
- •Дополнительная
- •Приложение статистические таблицы
- •Критические значения коэффициента асимметрии (As), используемого для проверки гипотезы о нормальности распределения
- •Критические значения показателя эксцесса (Ex), используемого для проверки нормальности распределения
- •Теоретические частоты 8-классового нормального распределения ("шаг" 1 s)
- •Теоретические частоты 16-классового нормального распределения ("шаг" 0,5 s)
- •Значения z Пирсона и соответствующие им теоретические накопленные частоты
- •Стандартные значения хи-квадрат
- •Уровень значимости различий между экспериментальным и теоретическим распределениями по критерию λ Колмогорова – Смирнова
- •Критические значения критерия q Розенбаума
- •Критические значения критерия u Манна-Уитни для уровня значимости 0,95
- •Стандартные значения критерия Стьюдента
- •Стандартные значения критерия Фишера, используемые для оценки достоверности различий между двумя выборками
- •Величины угла j в радианах для разных процентных долей (угловое преобразование Фишера)
- •Критические значения коэффициентов корреляции Пирсона и Спирмена
- •Критические значения коэффициента t Кендалла
- •Число пар значений, достаточное для статистической значимости коэффицентов корреляции Пирсона и Спирмена
- •Критические значения дихотомического коэффициента корреляции j
- •Границы критической области для критерия знаков
- •Критические значения критерия т Вилкоксона
Задача 4. 3
Имеется следующая совокупность экспериментальных данных: 1,00; 1,26; 1,58; 2,00; 2,51; 3,16; 3,98; 5,01; 6,31; 7,94.
Задание
Вычислить среднее геометрическое значение данной совокупности двумя способами:
а) вычислением произведения значений и возведения в соответствующую степень;
б) путем логарифмирования по основанию e.
Раздел 5. Меры изменчивости (разнообразия, вариативности) исследуемого признака
Две выборочные совокупности могут иметь одинаковые или близкие между собой средние значения признака и в то же время существенно различаться по степени вариабельности (вариативности) этого признака.
Например, имеется две группы испытуемых (по 100 человек в каждой), у которых исследуется коэффициент интеллекта (IQ). Средние значения IQ в той и другой группе могут приблизительно совпадать (допустим, IQ1 = 102 и IQ2 = 97), и констатация этого факта даст нам очень немного информации. В то же время известно, что индивидуальные значения в первой группе испытуемых изменяются от 85 до 116, а во второй от 60 до 135. На основании этого мы можем сказать, что вторая выборка обладает большим разнообразием признака по сравнению с первой.
Для определения степени разнообразия (изменчивости) исследуемого параметра используются различные критерии: пределы разнообразия, размах вариаций, среднее и стандартное отклонения, дисперсия, коэффициент вариации и др.
5. 1. Лимиты (пределы) разнообразия
Лимит (предел) разнообразия - это указание наименьшей и наибольшей величины признака среди всех представителей группы:
(5.1)
Другими словами, предел разнообразия признака не вычисляется, а лишь констатируется. Так, в приведенном выше примере lim x1 = 85 116 и lim x2 = 60 135.
5. 2. Размах вариаций
Размах
вариаций (r)
есть математическая
разность между максимальной и минимальной
величиной признака:
(5.2)
В нашем примере размах вариаций в первой группе (r1) составляет 116 – 85 = 31 и во второй (r2) – 135 – 60 = 75.
Размах от 10-го до 90-го процентиля (мера D) вычисляется следующим образом:
(5.3)
Другими словами, для вычисления меры D отсекается по 10% значений с левого и правого края распределения и определяется размах вариаций для оставшихся 80%. Эта мера более стабильна, чем включающий и исключающий размах, поскольку на него не влияют крайние (возможно, случайные) значения вариаций.
Междуквартильный
размах – еще
более жесткая мера изменчивости, нежели
мера D. Междуквартильный
размах – это разность между 1-м и 3-м
квартилями группы:
(5.4)
Другими словами, для определения междуквартильного размаха с краев распределения признака отсекается по 25% значений и определяются границы для оставшихся (наиболее типичных) 50%, которые в максимальной степени характеризуют центральную тенденцию.
Полумеждуквартильный размах (Q1/2) равен половине расстояния между 1-м и 3-м квартилями:
(5.5)
Суть этой статистической меры состоит в уравнивании между собой расстояний между 1-м и 2-м и между 2-м и 3-м квартилями, которые в случае несимметричных распределений могут отличаться друг от друга. В случае же симметричного распределения полумеждуквартильный размах включает в себя приблизительно 25% данных.