- •Contents
 - •Preface
 - •1.1 Elementary thermodynamic ideas of surfaces
 - •1.1.1 Thermodynamic potentials and the dividing surface
 - •1.1.2 Surface tension and surface energy
 - •1.1.3 Surface energy and surface stress
 - •1.2 Surface energies and the Wulff theorem
 - •1.2.1 General considerations
 - •1.2.3 Wulff construction and the forms of small crystals
 - •1.3 Thermodynamics versus kinetics
 - •1.3.1 Thermodynamics of the vapor pressure
 - •1.3.2 The kinetics of crystal growth
 - •1.4 Introduction to surface and adsorbate reconstructions
 - •1.4.1 Overview
 - •1.4.2 General comments and notation
 - •1.4.7 Polar semiconductors, such as GaAs(111)
 - •1.5 Introduction to surface electronics
 - •1.5.3 Surface states and related ideas
 - •1.5.4 Surface Brillouin zone
 - •1.5.5 Band bending, due to surface states
 - •1.5.6 The image force
 - •1.5.7 Screening
 - •Further reading for chapter 1
 - •Problems for chapter 1
 - •2.1 Kinetic theory concepts
 - •2.1.1 Arrival rate of atoms at a surface
 - •2.1.2 The molecular density, n
 - •2.2 Vacuum concepts
 - •2.2.1 System volumes, leak rates and pumping speeds
 - •2.2.2 The idea of conductance
 - •2.2.3 Measurement of system pressure
 - •2.3 UHV hardware: pumps, tubes, materials and pressure measurement
 - •2.3.1 Introduction: sources of information
 - •2.3.2 Types of pump
 - •2.3.4 Choice of materials
 - •2.3.5 Pressure measurement and gas composition
 - •2.4.1 Cleaning and sample preparation
 - •2.4.3 Sample transfer devices
 - •2.4.4 From laboratory experiments to production processes
 - •2.5.1 Historical descriptions and recent compilations
 - •2.5.2 Thermal evaporation and the uniformity of deposits
 - •2.5.3 Molecular beam epitaxy and related methods
 - •2.5.4 Sputtering and ion beam assisted deposition
 - •2.5.5 Chemical vapor deposition techniques
 - •Further reading for chapter 2
 - •Problems for chapter 2
 - •3.1.1 Surface techniques as scattering experiments
 - •3.1.2 Reasons for surface sensitivity
 - •3.1.3 Microscopic examination of surfaces
 - •3.1.4 Acronyms
 - •3.2.1 LEED
 - •3.2.2 RHEED and THEED
 - •3.3 Inelastic scattering techniques: chemical and electronic state information
 - •3.3.1 Electron spectroscopic techniques
 - •3.3.2 Photoelectron spectroscopies: XPS and UPS
 - •3.3.3 Auger electron spectroscopy: energies and atomic physics
 - •3.3.4 AES, XPS and UPS in solids and at surfaces
 - •3.4.2 Ratio techniques
 - •3.5.1 Scanning electron and Auger microscopy
 - •3.5.3 Towards the highest spatial resolution: (a) SEM/STEM
 - •Further reading for chapter 3
 - •Problems, talks and projects for chapter 3
 - •4.2 Statistical physics of adsorption at low coverage
 - •4.2.1 General points
 - •4.2.2 Localized adsorption: the Langmuir adsorption isotherm
 - •4.2.4 Interactions and vibrations in higher density adsorbates
 - •4.3 Phase diagrams and phase transitions
 - •4.3.1 Adsorption in equilibrium with the gas phase
 - •4.3.2 Adsorption out of equilibrium with the gas phase
 - •4.4 Physisorption: interatomic forces and lattice dynamical models
 - •4.4.1 Thermodynamic information from single surface techniques
 - •4.4.2 The crystallography of monolayer solids
 - •4.4.3 Melting in two dimensions
 - •4.4.4 Construction and understanding of phase diagrams
 - •4.5 Chemisorption: quantum mechanical models and chemical practice
 - •4.5.1 Phases and phase transitions of the lattice gas
 - •4.5.4 Chemisorption and catalysis: macroeconomics, macromolecules and microscopy
 - •Further reading for chapter 4
 - •Problems and projects for chapter 4
 - •5.1 Introduction: growth modes and nucleation barriers
 - •5.1.1 Why are we studying epitaxial growth?
 - •5.1.3 Growth modes and adsorption isotherms
 - •5.1.4 Nucleation barriers in classical and atomistic models
 - •5.2 Atomistic models and rate equations
 - •5.2.1 Rate equations, controlling energies, and simulations
 - •5.2.2 Elements of rate equation models
 - •5.2.3 Regimes of condensation
 - •5.2.4 General equations for the maximum cluster density
 - •5.2.5 Comments on individual treatments
 - •5.3 Metal nucleation and growth on insulating substrates
 - •5.3.1 Microscopy of island growth: metals on alkali halides
 - •5.3.2 Metals on insulators: checks and complications
 - •5.4 Metal deposition studied by UHV microscopies
 - •5.4.2 FIM studies of surface diffusion on metals
 - •5.4.3 Energies from STM and other techniques
 - •5.5 Steps, ripening and interdiffusion
 - •5.5.2 Steps as sources: diffusion and Ostwald ripening
 - •5.5.3 Interdiffusion in magnetic multilayers
 - •Further reading for chapter 5
 - •Problems and projects for chapter 5
 - •6.1 The electron gas: work function, surface structure and energy
 - •6.1.1 Free electron models and density functionals
 - •6.1.2 Beyond free electrons: work function, surface structure and energy
 - •6.1.3 Values of the work function
 - •6.1.4 Values of the surface energy
 - •6.2 Electron emission processes
 - •6.2.1 Thermionic emission
 - •6.2.4 Secondary electron emission
 - •6.3.1 Symmetry, symmetry breaking and phase transitions
 - •6.3.3 Magnetic surface techniques
 - •6.3.4 Theories and applications of surface magnetism
 - •Further reading for chapter 6
 - •Problems and projects for chapter 6
 - •7.1.1 Bonding in diamond, graphite, Si, Ge, GaAs, etc.
 - •7.1.2 Simple concepts versus detailed computations
 - •7.2 Case studies of reconstructed semiconductor surfaces
 - •7.2.2 GaAs(111), a polar surface
 - •7.2.3 Si and Ge(111): why are they so different?
 - •7.2.4 Si, Ge and GaAs(001), steps and growth
 - •7.3.1 Thermodynamic and elasticity studies of surfaces
 - •7.3.2 Growth on Si(001)
 - •7.3.3 Strained layer epitaxy: Ge/Si(001) and Si/Ge(001)
 - •7.3.4 Growth of compound semiconductors
 - •Further reading for chapter 7
 - •Problems and projects for chapter 7
 - •8.1 Metals and oxides in contact with semiconductors
 - •8.1.1 Band bending and rectifying contacts at semiconductor surfaces
 - •8.1.2 Simple models of the depletion region
 - •8.1.3 Techniques for analyzing semiconductor interfaces
 - •8.2 Semiconductor heterojunctions and devices
 - •8.2.1 Origins of Schottky barrier heights
 - •8.2.2 Semiconductor heterostructures and band offsets
 - •8.3.1 Conductivity, resistivity and the relaxation time
 - •8.3.2 Scattering at surfaces and interfaces in nanostructures
 - •8.3.3 Spin dependent scattering and magnetic multilayer devices
 - •8.4 Chemical routes to manufacturing
 - •8.4.4 Combinatorial materials development and analysis
 - •Further reading for chapter 8
 - •9.1 Electromigration and other degradation effects in nanostructures
 - •9.2 What do the various disciplines bring to the table?
 - •9.3 What has been left out: future sources of information
 - •References
 - •Index
 
Index
Note: Page numbers for text references are in upright type, whereas page numbers for Wgures are in sloping type. Problems and projects are indicated (p), appendices are indicated (a), with Appendix D indicated (w) for web. Not all techniques and acronyms are indexed; see Appendix B for a guide.
acronyms 64, 69±70,  | 
	models of 185±191, 187,  | 
	peak height, peak to  | 
306±308(a)  | 
	188, 191, 224±225(p)  | 
	background ratio 88±91,  | 
ad-atoms  | 
	surface energy values  | 
	90±91  | 
and ad-dimers on Si and Ge  | 
	196±200, 198  | 
	quantiWcation of 88±95,  | 
235±242, 240, 241,  | 
	work function values 186,  | 
	89±91, 94  | 
245±249, 246, 248,  | 
	188, 193±196  | 
	ratio techniques for 92±104,  | 
258±259(p)  | 
	alkali halide substrates  | 
	94, 97, 99  | 
in TLK model 7, 34(p)  | 
	157±161, 158, 174±176,  | 
	and sample cleaning 50, 80  | 
see also adsorption,  | 
	175  | 
	standards and consulting  | 
nucleation and growth,  | 
	Anderson±Grimley±Newns  | 
	organizations 92,  | 
surface diVusion  | 
	model 130±132, 131,  | 
	312±313(w)  | 
ad-layer structures 19±22, 28,  | 
	143(p)  | 
	signal to noise ratio (SNR)  | 
21, 23, 29, 120±125, 121,  | 
	anharmonicity, see vibrations,  | 
	in 95, 98, 100±104, 102,  | 
123, 128±134, 130,  | 
	anharmonic  | 
	103, 106±107(p)  | 
141±142(p)  | 
	Askin±Teller model 129  | 
	see also scanning Auger  | 
adsorption 108±143, 146±147,  | 
	atomic force microscopy  | 
	microscopy  | 
206±210  | 
	(AFM) 67±70, 68±69,  | 
	
  | 
at low coverage 109±113,  | 
	105  | 
	bakeout procedures 40, 45±47,  | 
111  | 
	Auger electron spectroscopy  | 
	48  | 
chemisorption versus  | 
	(AES) 50, 63±64, 76±104  | 
	ballistic electron emission  | 
physisorption 108±109  | 
	of adsorbed layers 118±119,  | 
	microscopy (BEEM) and  | 
versus crystal growth  | 
	119, 137±139, 138  | 
	spectroscopy 266±268,  | 
118±119, 146±147, 146,  | 
	analyzers and spectra 76±79,  | 
	267±269  | 
147  | 
	76±79, 81±87, 84, 86±87,  | 
	bamboo structures 297  | 
and electron emission  | 
	99±104, 99±101  | 
	band alignment and oVsets  | 
206±210, 206, 208±209  | 
	backscattered electrons,  | 
	272±279, 273±275  | 
equilibrium conditions for  | 
	backscattering factor 76,  | 
	band bending 32, 32, 209,  | 
114±118  | 
	88±92, 90, 97±99, 97  | 
	260±265, 261, 264  | 
Henry law 110±113  | 
	eYciency and X-ray  | 
	band-gap engineering  | 
Langmuir isotherm  | 
	Xuorescence yield 82±84,  | 
	274±280, 291  | 
109±110, 111  | 
	85  | 
	band structure calculations  | 
at steps 128  | 
	energies and atomic physics  | 
	190±193, 219±222,  | 
virial expansions 113±114  | 
	81±84, 82±84  | 
	227±232, 326±330(a)  | 
see also ad-atoms, ad-layer,  | 
	energy shifts and lineshapes  | 
	spin-polarized 219±222, 220,  | 
chemisorption,  | 
	84±87, 86, 87  | 
	221  | 
desorption, physisorption  | 
	growth mode analysis  | 
	tight-binding 230±232,  | 
alkali and s-p bonded metal  | 
	92±95, 94, 179±181, 180  | 
	257±258(p), 328±330(a)  | 
(adatoms, clusters,  | 
	L±S versus j±j coupling 82,  | 
	Bessel functions 152, 182(p),  | 
surfaces, etc.)  | 
	83  | 
	190, 225(p)  | 
adsorption of 195±196,  | 
	inelastic mean free path  | 
	bonding and bond angles  | 
206±210, 206  | 
	87±90, 89, 93±94, 94,  | 
	due to d-bands 191±193,  | 
clusters 186±188, 187  | 
	104  | 
	192, 218±222, 226(p)  | 
363
364 Index
bonding and bond angles  | 
	oxidation reactions 133±134,  | 
	versus adsorption 118±119,  | 
(cont.)  | 
	137±141, 138, 140  | 
	145±147, 146, 147  | 
in metals 190±3, 196±200,  | 
	and painters 134  | 
	and dislocations 15, 17, 18,  | 
218±222  | 
	precursor stage of 108  | 
	19, 147, 246±251, 251,  | 
in semiconductors 227±242  | 
	cleave, cleavage 3, 49, 236  | 
	268±269, 269  | 
and s-p hybridization  | 
	cluster density, size see  | 
	from the liquid 17±18  | 
227±229, 257±258(p),  | 
	nucleation and growth  | 
	repeatable step in 6  | 
328±330(a)  | 
	coalescence 151±152, 153, 154,  | 
	of semiconductors 245±256,  | 
bond counting 5±15  | 
	157, 158, 179  | 
	246, 251, 254, 255  | 
in crystals 8±9, 10, 33±34(p)  | 
	cohesion, cohesive energy,  | 
	at steps, and the  | 
in nucleation models 145,  | 
	function see bonding,  | 
	condensation coeYcient  | 
155±156  | 
	sublimation energy  | 
	35(p), 174±179, 175, 177,  | 
in polar semiconductors  | 
	compressibility, isothermal  | 
	181±182(p)  | 
235, 258(p)  | 
	115±116, 117  | 
	supersaturation for 15±19,  | 
in TLK model 5±7, 6, 7,  | 
	computer codes and  | 
	17, 18, 19, 34(p), 247±252  | 
33±34(p)  | 
	simulations 150, 156±157,  | 
	see also chemical vapor  | 
bond orientational order  | 
	193, 236, 313(w),  | 
	deposition, epitaxial  | 
124±125  | 
	327±328(a)  | 
	growth, molecular beam  | 
boron nitride, pyrolytic 56  | 
	see also eVective medium  | 
	epitaxy, nucleation and  | 
Brillouin zone 31±32, 31, 232  | 
	theory, molecular  | 
	growth, thin Wlm  | 
  | 
	dynamics, Monte Carlo  | 
	deposition procedures  | 
capture numbers 151±155, 155,  | 
	condensation  | 
	crystallographic notation 8±9,  | 
182(p)  | 
	coeYcient, 181±182(p)  | 
	312±313(w)  | 
catalysis 52±54, 128, 135±141  | 
	regimes 152±155, 155  | 
	cubic anisotropy 212  | 
on d-band metals 143(p)  | 
	conductance, conductivity  | 
	
  | 
industry 52±54, 135  | 
	of semiconductors 280±281,  | 
	delta-doped layers 265±266,  | 
small metal particle (SMP)  | 
	283±284  | 
	266, 278  | 
52±54, 135±137, 136,  | 
	of thin (metal) Wlms  | 
	demagnetizing energy, Weld  | 
137  | 
	280±287  | 
	212  | 
spatio-temporal reactions  | 
	of vacuum pipes 41±42, 41,  | 
	density functional theory  | 
139±141, 140  | 
	44±45, 318(a)  | 
	(DFT) 184±199, 275,  | 
see also chemisorption  | 
	conWgurational entropy 34(p),  | 
	326±327(a)  | 
cell model, for adsorbed layers  | 
	109±110, 130, 258±259(a)  | 
	of chemisorption 133, 170  | 
113±114, 126, 126  | 
	conversion factors 309±311(a)  | 
	eVective medium theory  | 
quantum 114, 114, 126  | 
	Coulomb blockade 284, 293  | 
	(EMT) 133±134, 165±166,  | 
chemical synthesis and  | 
	critical cluster, or nucleus, size  | 
	170±171, 191±193, 192  | 
materials development  | 
	148±157, 155  | 
	embedded atom methods  | 
289±295  | 
	critical phenomena, points and  | 
	(EAM) 133, 191  | 
chemical vapor deposition  | 
	exponents 115, 129±130,  | 
	jellium model 184±190, 185,  | 
(CVD) 52, 59±60,  | 
	211±212  | 
	187±188, 195±196, 198,  | 
252±256, 289±291, 300  | 
	crystal surfaces and interfaces,  | 
	224±225(p)  | 
and gas purity 52, 59  | 
	introduction 5±17  | 
	local density approximation  | 
modeling of, 252±256, 300  | 
	melting transition 15  | 
	(LDA) 186, 231,  | 
and precursor molecules  | 
	rough surfaces, roughening  | 
	326±327(a)  | 
289±291, 290  | 
	transition 7, 15, 16, 17  | 
	denuded zones, at steps 163,  | 
thin Wlm production  | 
	simple models of 5±9, 6, 7  | 
	174±176, 177, 182±183(p),  | 
methods 59±60, 59  | 
	singular, smooth 7±9,17  | 
	246, 247±248  | 
chemisorption 108±109, 114,  | 
	see also reconstruction, solid  | 
	depletion layer or region 260,  | 
118, 128±141  | 
	on solid model, vicinal  | 
	263±265, 265  | 
and catalysis 135±141  | 
	surface  | 
	desorption, and adsorption 16,  | 
on d-band metals 143(p)  | 
	crystal growth (kinetics)  | 
	34±35(p), 118±119  | 
Newns±Anderson model  | 
	15±19, 54±60, 144±181,  | 
	and bakeout procedures  | 
130±132, 131, 143(p)  | 
	245±256  | 
	40  | 
Index  | 
	
  | 
	365  | 
  | 
	
  | 
	
  | 
and catalytic reactions  | 
	stripe 22, 122  | 
	electron emission 76±104,  | 
135±141, 137  | 
	walls 22, 23, 122±125  | 
	200±210, 261±263  | 
spectroscopy, thermal (TDS)  | 
	
  | 
	adsorption eVects on  | 
127±128, 127  | 
	eVective medium theory  | 
	206±210, 206, 208±209  | 
diamond-like carbon (DLC)  | 
	(EMT) 133±134, 165,  | 
	cold Weld (CFE) 202±206,  | 
cathodes 204, 205, 294  | 
	170±171, 191±193, 192,  | 
	203, 204±205, 225±226(p)  | 
diVusion, in alloys 183(p)  | 
	200  | 
	Xuctuations and diVusion  | 
bulk versus surface 251  | 
	eVusion sources 56±58, 56, 58  | 
	206±208, 208  | 
chemical, or mass transport  | 
	Ehrlich±Schwoebel barrier  | 
	secondary 76, 76, 95±97, 96,  | 
139, 176±177, 183(p)  | 
	176±178, 177, 182±183(p),  | 
	97, 207±210  | 
intrinsic 16, 183(p)  | 
	253  | 
	thermal 200±202, 225(p),  | 
see also interdiVusion,  | 
	Einstein model (of vibrations)  | 
	261±262, 261±263  | 
surface diVusion  | 
	13±15, 110±113, 120,  | 
	thermal Weld (TFE)  | 
dimer-adatom-stacking fault  | 
	126±127, 156  | 
	206±207, 209  | 
(DAS) model 28±29,  | 
	in adsorbed layers 110±113,  | 
	see also electron  | 
235±239, 237, 238, 240  | 
	111, 120, 126±127  | 
	spectroscopy  | 
dimer(s), and adatoms on Si  | 
	in nucleation models 156  | 
	electron energy loss  | 
245±249, 248, 259(p)  | 
	in vapor pressure 13±15, 13,  | 
	spectroscopy (EELS) 76,  | 
asymmetric 25, 239±242,  | 
	34±35(p)  | 
	77, 203, 204  | 
241  | 
	electromigration 297±299  | 
	high resolution (HREELS)  | 
and dimer rows on Si(001)  | 
	electron aYnity and ionization  | 
	134, 105±106(p)  | 
25±27, 26, 27, 239±242,  | 
	potential 30±31, 31  | 
	electron gas, charge density  | 
241, 246  | 
	negative electron aYnity  | 
	waves in 190, 224±225(p)  | 
rotation and migration of  | 
	(NEA) 32, 216  | 
	density (Friedel) oscillations  | 
246, 247±249  | 
	electron beam evaporation  | 
	in 185, 186±190, 187, 189,  | 
Si2 and Ge2 231  | 
	56  | 
	224±225(p), 263, 327(a)  | 
vacancy row structures 250,  | 
	electron beam lithography  | 
	exchange-correlation energy  | 
252  | 
	95  | 
	185±186, 195, 326±327(a)  | 
dipole layers in  | 
	electron beam sample heating  | 
	free electron models  | 
semiconductors 260,  | 
	49  | 
	184±190, 189  | 
272±273, 273, 279  | 
	electron density see electron  | 
	and ionic lattice 190±193,  | 
dipole moment, layer,  | 
	gas  | 
	191, 192  | 
deWnitions 195±196  | 
	electron diVraction 20±30,  | 
	jellium model 184±190, 185,  | 
Xuctuating 108  | 
	63±76, 120±125, 243±246,  | 
	187±188, 195±196, 198,  | 
and work function 195±197,  | 
	253±255  | 
	224±225(p)  | 
196±197  | 
	and defects, domains 75,  | 
	see also density functional  | 
diodes, forward and reverse  | 
	122±125, 123, 243±245,  | 
	theory  | 
bias 260±263, 261±263  | 
	244  | 
	electron holography 75,  | 
disciplines, role of 299±301  | 
	dynamical theory of 66, 71,  | 
	212±213  | 
disclinations 125  | 
	75, 105±106(p)  | 
	electron microscopy 65±66,  | 
dislocations, and electrical  | 
	inelastic scattering in,  | 
	95±104, 139±141,  | 
activity 268, 269  | 
	74±77, 106(p)  | 
	157±159, 165±167,  | 
misWt 122±125, 147, 171,  | 
	LEED and SPA-LEED  | 
	212±224, 250±251,  | 
246±251, 251, 268±269,  | 
	20±28, 63±64, 70±76, 71,  | 
	287±294  | 
269  | 
	106(p), 120±125, 123,  | 
	low energy (LEEM) 66,  | 
screw 15, 17, 19  | 
	243±245, 244  | 
	165±167, 218, 245, 247  | 
threading 125  | 
	reXection high energy  | 
	in magnetism 212±218,  | 
domain(s), and LEED  | 
	(RHEED) 66, 70±75, 72,  | 
	214±215, 217±218,  | 
patterns 120±122, 123,  | 
	72±75, 237, 246, 253±255,  | 
	223±224, 223  | 
243±244, 244  | 
	254, 255  | 
	photo- (PEEM) 66,  | 
eVect of strain 243±244, 244  | 
	transmission high energy  | 
	139±141, 140  | 
on Si(001) 22, 24±27, 26,  | 
	(THEED) 66, 72±75,  | 
	reXection (REM) 65±66,  | 
243±244, 244  | 
	120±126, 235±236  | 
	65  | 
366 Index
electron microscopy (cont.)  | 
	on Si and Ge(001) 242,  | 
	giant magneto-resistance  | 
transmission (TEM) 65±66,  | 
	245±252, 246, 251  | 
	(GMR) 179, 224,  | 
65, 135±137, 136,  | 
	three modes of 145±147,  | 
	284±288, 286  | 
157±159, 158, 265,  | 
	146, 147  | 
	Gibbs' dividing surface 1±2, 2  | 
287±294  | 
	see also chemical vapor  | 
	graphite 23, 56, 115±127,  | 
scanning transmission  | 
	deposition, crystal  | 
	141±142(p), 227±229  | 
(STEM) 65, 66, 100±104,  | 
	growth, molecular beam  | 
	growth modes 92±95, 145±147,  | 
100, 103, 250±251, 251  | 
	epitaxy, thin Wlm  | 
	146, 179±181  | 
see also ballistic electron  | 
	deposition procedures  | 
	AES analysis of 92±95, 94,  | 
emission microscopy,  | 
	epitaxy, deWnition 144  | 
	179±181, 180  | 
scanning Auger  | 
	strained layer 249±252  | 
	see also epitaxial growth,  | 
microscopy, scanning  | 
	equilibrium form, shape see  | 
	nucleation and growth  | 
electron microscopy  | 
	surface energy  | 
	
  | 
electron sources 200±207, 216  | 
	exchange-correlation energy,  | 
	helium atom scattering (HAS)  | 
brightness of 201±202  | 
	hole 185±186, 195, 219,  | 
	105±106(p), 127±128, 127  | 
LaB6 202, 207, 209  | 
	326±327(a)  | 
	Heisenberg Hamiltonian 211  | 
Spindt and DLC cathodes  | 
	
  | 
	Henry law adsorption 110±112  | 
204±205, 205  | 
	faceting 8, 200, 245  | 
	hexatic phase 124±125  | 
spin-polarized 216  | 
	Fermi±Dirac energy  | 
	Hubbard models 87, 131  | 
W-Wlament 201  | 
	distribution 186, 203,  | 
	hybridization (s-p) 227±229,  | 
W(310) and (111) tips 203,  | 
	225±226(p), 281  | 
	257±258(p), 328±330(a)  | 
204, 206  | 
	Fermi sphere, surface 188±189,  | 
	
  | 
Zr/O coated W(001) 207  | 
	189, 225(p)  | 
	in situ experiments 50±51,  | 
electron spectroscopy 76±104  | 
	ferroand antiferro-magnetism  | 
	165±181  | 
analyzers for 76±81, 78  | 
	210±224  | 
	in situ growth results 161±181  | 
for chemical analysis  | 
	Weld emission 202±207  | 
	in situ transfer devices 51±52,  | 
(ESCA) 76  | 
	cold (CFE) 202±206, 203,  | 
	53  | 
and magnetic domains  | 
	204±205, 225±226(p)  | 
	interdiVusion 147, 179±181,  | 
215±216  | 
	microscopy (FEM) 206±207,  | 
	180, 183(p)  | 
see also Auger electron  | 
	206, 208  | 
	integrated circuit (IC) 298, 301  | 
spectroscopy, electron  | 
	spectroscopy (FES) 203,  | 
	metal interconnects in  | 
energy loss spectroscopy,  | 
	204, 207, 209  | 
	297±299  | 
photoelectron  | 
	see also electron sources  | 
	ion beam assisted deposition  | 
spectroscopy  | 
	Weld ion microscopy (FIM) 66,  | 
	(IBAD) 58  | 
electron spin resonance (ESR)  | 
	167±169, 168, 171±172,  | 
	ion beam sputtering and  | 
268±269, 270  | 
	176, 203  | 
	sputter deposition 57±59  | 
ellipsometry 140  | 
	Xuoride substrates 160±164,  | 
	ion beam surface techniques  | 
embedded atom methods  | 
	162  | 
	64  | 
(EAM) 133, 191  | 
	Fowler±Nordheim equation,  | 
	ion bombardment (sputter)  | 
epitaxial growth 54, 57±60,  | 
	plot 202±203, 225±226(p)  | 
	cleaning 50, 53, 57  | 
144±181, 242, 245±256  | 
	Frank±van der Merwe growth  | 
	Ising model 128±129, 210±211  | 
and adsorption 146±147,  | 
	mode 145±146, 146  | 
	isobar, isostere, isotherm  | 
146, 147  | 
	Friedel oscillations 132, 185,  | 
	116±118, 126  | 
of compound  | 
	186±190, 187, 189,  | 
	isosteric heat of adsorption  | 
semiconductors 252±256,  | 
	224±225(p), 263, 327(a)  | 
	117±118, 316±317(a)  | 
254, 255  | 
	
  | 
	isothermal compressibility  | 
and device production 54,  | 
	gallium arsenide, nitride, see  | 
	115±116, 117  | 
57±60, 58, 59, 144±145,  | 
	semiconductors (III±V)  | 
	
  | 
246, 250, 256  | 
	germanium, see dimer,  | 
	jellium model 184±190, 185,  | 
multilayer, rough 254, 256  | 
	reconstruction,  | 
	187±188, 195±196, 198,  | 
rate equation models of  | 
	semiconductor, substrate,  | 
	224±225(p)  | 
149±157, 153, 155, 156  | 
	surface energy  | 
	journalists, role of 298±299  | 
Index  | 
	
  | 
	367  | 
  | 
	
  | 
	
  | 
Kerr eVects 213±215, 214±215,  | 
	low energy electron  | 
	Mermin±Wagner theorem  | 
287  | 
	microscopy (LEEM) 66,  | 
	210±211  | 
kinetic Monte Carlo (KMC)  | 
	165±167, 245  | 
	metal(s) 9±12, 15, 22±23,  | 
simulation 150, 156±157,  | 
	and ad-dimers on Si(001)  | 
	135±137, 184±224  | 
156, 253±256, 254, 255  | 
	247, 248  | 
	d- and f-band 190±193, 192,  | 
kinetic theory, in relation to  | 
	spin polarized (SPLEEM)  | 
	218±222, 220±222  | 
vacuum 36±39, 39  | 
	216, 218  | 
	electronic structure models  | 
Knudsen evaporation source  | 
	
  | 
	184±200  | 
53, 56, 61(p)  | 
	magnetic circular dichroism  | 
	small metal particle  | 
Knudsen Xow regime and  | 
	(MCD) 214±215  | 
	(catalysts) 135±137, 136  | 
number 42  | 
	magnetic force microscopy  | 
	s-p bonded 188, 190±200,  | 
Kossel crystal 6±9, 7, 14, 16,  | 
	(MFM) 213, 216±218  | 
	198  | 
34(p)  | 
	magnetic multilayer devices  | 
	sublimation energies 15  | 
Kosterlitz±Thouless  | 
	144, 179±181, 222±224,  | 
	surface energies 9, 11±12,  | 
dislocations 125  | 
	284±289  | 
	196±200, 198  | 
  | 
	coupling in 222±224, 223  | 
	surface structures 22±23,  | 
Langmuir adsorption isotherm  | 
	interdiVusion in 179±181,  | 
	192±193  | 
109±110, 111  | 
	180  | 
	work function of 188,  | 
lattice gas models 128±130,  | 
	spin-dependent scattering in  | 
	193±196, 197  | 
130  | 
	284±287  | 
	see also alkali, noble,  | 
ledges and kinks, in TLK  | 
	magnetic surface techniques  | 
	transition, refractory  | 
model 6±7, 6, 7  | 
	213±218, 214±215, 217,  | 
	(metals), nucleation and  | 
LEED, see low energy electron  | 
	218  | 
	growth  | 
diVraction  | 
	magneto-crystalline anisotropy  | 
	metal-induced gap states  | 
Lennard±Jones cell model  | 
	212  | 
	(MIGS) 271±273, 274,  | 
113±114, 114, 126,  | 
	magneto-elastic anisotropy,  | 
	278±279  | 
126  | 
	magnetostriction  | 
	metal±oxide±semiconductor  | 
Lennard±Jones potentials  | 
	212±213  | 
	(MOS and CMOS)  | 
23±25, 24, 114, 114  | 
	magneto-optic Kerr eVects  | 
	devices 260, 268, 298±299  | 
Lindhard screening 188, 263  | 
	(MOKE and SMOKE)  | 
	metal±semiconductor  | 
local density approximation  | 
	213±215, 214±215, 287  | 
	interactions 260±263,  | 
(LDA) see density  | 
	magneto-resistance, giant  | 
	267±274, 298±299  | 
functional theory  | 
	(GMR) 179, 224,  | 
	Ag or Au/Si or Ge(111) 28,  | 
local spin density (LSD)  | 
	284±287, 286  | 
	29, 72, 74, 298  | 
approximation 219±222,  | 
	magnons 210±211  | 
	Ag/Si(001) 93±95, 94,  | 
220±221  | 
	mass spectrometry, and gas  | 
	101±102  | 
Lorentz microscopy 212±213  | 
	composition 47, 48, 62(p)  | 
	Al±Si±(SiO2) 262, 263, 298  | 
low energy electron diVraction  | 
	mean free path, inelastic (imfp)  | 
	CoSi2±Si 267±269, 268, 269  | 
(LEED) 20±30, 63±66,  | 
	64, 87±90, 89, 93±94, 94,  | 
	Cu±Si 299  | 
70±76  | 
	104  | 
	mica substrate 137, 161,  | 
of adsorbed layers 119±123,  | 
	mean free path versus  | 
	282±283, 283  | 
123, 130  | 
	attenuation length 93, 104  | 
	microscopy techniques 65±69,  | 
of domains 122, 123,  | 
	mean free path for molecular  | 
	65, 68±69  | 
243±245, 244  | 
	collisions 37±38, 39  | 
	see also electron microscopy,  | 
geometry and  | 
	melting of adsorbed layers  | 
	scanned probe  | 
instrumentation 53,  | 
	115±117, 115, 116,  | 
	microscopy, scanning  | 
70±71, 71, 106(p)  | 
	124±125  | 
	Auger microscopy,  | 
I±V analysis 71, 106(p), 232,  | 
	melting of aligned hexatic  | 
	scanning electron  | 
236  | 
	phase 124±125  | 
	microscopy  | 
spot proWle analysis (SPA-  | 
	melting transition, at crystal  | 
	MIDAS project 100±104,  | 
LEED) 70, 75, 165, 172,  | 
	surfaces 15, 139,  | 
	100±103, 214±215,  | 
246  | 
	258±259(p)  | 
	214±215  | 
368 Index
misWt dislocations 122, 171,  | 
	growth mode analysis  | 
	phases and phase transitions,  | 
249±251, 251, 268, 269  | 
	92±95, 94, 179±181, 180  | 
	diagrams 20±22, 114±130,  | 
molecular beam epitaxy  | 
	metals on insulators  | 
	210±213  | 
(MBE) 57±58, 252±256  | 
	157±164, 158, 162  | 
	commensurate/  | 
of compound  | 
	metals on metals 165±174,  | 
	incommensurate 20±22,  | 
semiconductors 252±256,  | 
	166±168, 170, 172±173  | 
	21, 23, 120±124, 121,  | 
254, 255  | 
	on semiconductors 245±256,  | 
	123  | 
and thin Wlm deposition 53,  | 
	246, 251, 254  | 
	hexatic 124±125  | 
57, 58, 62(p)  | 
	nucleation and growth models  | 
	of Kr and Xe on graphite  | 
molecular dynamics (MD) 25,  | 
	145±157, 161±164,  | 
	22, 23, 115±127, 115±117,  | 
133±134, 239±242, 241  | 
	246±249, 252±255  | 
	119, 121, 126, 141±143(p)  | 
monolayer (ML), deWnitions  | 
	atomistic 145, 147, 149±157,  | 
	of Kr and Xe on metals 122,  | 
and units 38, 39, 112  | 
	153, 155±156  | 
	127±128, 127  | 
Monte Carlo (MC) simulation  | 
	capture numbers in 151±155,  | 
	lattice gas models 128±130,  | 
of adsorption 114, 125, 129  | 
	155, 182(p)  | 
	130  | 
of electron scattering in  | 
	classical 145±149, 147,  | 
	in monolayer adsorbates  | 
solids 3.28  | 
	149  | 
	119±128, 119, 121, 123,  | 
kinetic (KMC) of epitaxial  | 
	cluster density formulae  | 
	126, 196  | 
growth 150, 156±157, 156,  | 
	150±157  | 
	of Ne and Ar on graphite  | 
253±256, 254, 255  | 
	cluster growth rate  | 
	122, 123, 124, 126  | 
of solid on solid model  | 
	181±182(p)  | 
	and symmetry breaking  | 
14±19, 16±19, 253±256,  | 
	cluster size distributions  | 
	210±213  | 
254, 255  | 
	150±152, 156±157, 156  | 
	phosphors 295  | 
multilayer growth models 254,  | 
	including defects 161±164,  | 
	photoemission 76±81, 84±87,  | 
255±256  | 
	163, 164  | 
	86  | 
multiply twinned particles 137  | 
	nucleation rate 150±152,  | 
	circularly polarized  | 
  | 
	157  | 
	214±215  | 
nanotubes 293±294, 294  | 
	for reconstructed  | 
	photoelectron spectroscopy  | 
Newns±Anderson model  | 
	semiconductors 246±249,  | 
	76±81, 84±87, 86  | 
130±132, 131, 143(p)  | 
	252±255  | 
	angular resolved (AR)UPS  | 
noble metals (Cu, Ag, Au, Pd,  | 
	nucleation density, rate see  | 
	76±81  | 
Pt, etc.)  | 
	nucleation and growth  | 
	energy shifts and lineshapes  | 
adsorption on 118, 127±128,  | 
	
  | 
	84±87, 86, 105±106(p)  | 
127, 133±141, 140  | 
	opto-electronic devices  | 
	ultraviolet (UPS) and X-ray  | 
as catalysts 52±54, 135±137,  | 
	274±280, 291±293  | 
	(XPS) 76, 79±80  | 
139±141, 140  | 
	Ostwald ripening 176±179,  | 
	see also synchrotron  | 
oxide structures on 20, 21,  | 
	183(p)  | 
	radiation  | 
104, 133±134, 137±141,  | 
	oxide substrates 135±137,  | 
	photoluminescence 275, 293  | 
140  | 
	161±164  | 
	physisorption 108±128  | 
resistivity of 282±283, 283  | 
	oxide surface structures 30,  | 
	of rare gases on graphite  | 
as substrates 118, 170, 172,  | 
	164  | 
	109±127, 141±143(p)  | 
176, 179±181, 188±189,  | 
	oxygen chemisorption 20, 21,  | 
	see also phases and phase  | 
189  | 
	133±135, 137±141, 138,  | 
	transitions  | 
surface energy and stress  | 
	140  | 
	plasmon, bulk and surface,  | 
196±200, 243  | 
	
  | 
	deWnition 31  | 
surface structure 22±23,  | 
	particle accelerators, vacuum  | 
	plasmon loss processes 74±76,  | 
192±193, 198  | 
	design 37±38, 61(p),  | 
	88  | 
work function 193±194, 197  | 
	313(w)  | 
	point defects, interfacial 265,  | 
nucleation and growth  | 
	passivation by oxides 134  | 
	268±269, 269  | 
experiments 92±95,  | 
	patch Welds 193±195, 209  | 
	see also vacancies  | 
157±174, 179±181,  | 
	pattern formation 171, 253,  | 
	Potts models 28, 129  | 
245±256  | 
	254, 295  | 
	pressure gauge types 46±47  | 
Index  | 
	
  | 
	369  | 
  | 
	
  | 
	
  | 
pressure measurement, total  | 
	diVuse scattering from  | 
	of complex (real world)  | 
and partial 39±42, 46±47,  | 
	adatoms 237  | 
	samples 98±99, 99  | 
48  | 
	geometry and patterns  | 
	at high resolution 100±104,  | 
pressure units and conversion  | 
	72±74, 72±74, 250  | 
	100±103  | 
factors 37, 39, 310(a)  | 
	growth and intensity  | 
	ratio techniques for 92±102,  | 
pseudopotentials, metals 184,  | 
	oscillations 57±58, 246,  | 
	97, 99  | 
190±194, 191, 195±199,  | 
	253±255, 254, 255  | 
	SNR problems 66, 95,  | 
198  | 
	as in situ diagnostic tool 53,  | 
	100±104, 106±107(p)  | 
pseudopotentials,  | 
	57±58, 58, 253±255, 255  | 
	scanning electron microscopy  | 
semiconductors 230±232,  | 
	refractory metals (Nb, Mo, W,  | 
	(SEM) 65, 66, 76,  | 
329±330(a)  | 
	etc.)  | 
	95±104  | 
pump-down equation 39±40,  | 
	adsorption and diVusion on  | 
	analytical versus image  | 
40  | 
	165±169, 168, 196,  | 
	resolution 100±104, 103  | 
pumps and pumping 43±45,  | 
	205±210, 206, 208  | 
	in situ growth 158, 159,  | 
318±319(a)  | 
	as electron sources 201, 203,  | 
	165±167, 166, 167,  | 
  | 
	204  | 
	179±181, 180, 250±251,  | 
quadrupole mass spectrometry  | 
	metal layers on 95±97, 96,  | 
	251  | 
(QMS) 47, 48, 62(p)  | 
	97, 165±169, 166, 216, 218  | 
	with polarization analysis  | 
quantum, cell model 114, 114,  | 
	surface energy 199  | 
	(SEMPA) 216, 217, 223,  | 
126  | 
	surface preparation 49±50  | 
	223  | 
conduction 280, 301  | 
	for thermal evaporation 54  | 
	in transmission (STEM) 65,  | 
corrals 188±189, 189, 313(w)  | 
	work function 193±196,  | 
	66, 100±104, 100, 103,  | 
dots and wires 250, 279±280  | 
	197  | 
	250±251, 251  | 
size eVect 222±223  | 
	residual gas analysis 46±48  | 
	in UHV, surface sensitivity  | 
well lasers 274±275, 276,  | 
	partial pressure, gas  | 
	95±98, 96±97, 166,  | 
278  | 
	composition  | 
	250±251, 251  | 
  | 
	measurement 46±47  | 
	see also secondary electron  | 
Raman scattering 276  | 
	QMS instrument and  | 
	scanning tunneling microscopy  | 
reconstructions (of surfaces  | 
	spectra 47, 48  | 
	(STM) 67, 68, 104±105,  | 
and adsorbates) 19±30,  | 
	resistance, resistivity, of thin  | 
	313(w)  | 
120±124, 192±193,  | 
	Wlm devices 280±287  | 
	in situ nucleation and  | 
227±242, 313(w)  | 
	RHEED, see reXection high  | 
	growth 169±174, 170, 172,  | 
of adsorbates 20±22, 21, 23,  | 
	energy electron diVraction  | 
	173, 177±179  | 
120±124  | 
	Richardson±Dushman  | 
	models of operation  | 
of ionic crystals 30  | 
	equation 200±201, 225,  | 
	225±226(p)  | 
of metals 22±23, 192±193  | 
	261  | 
	of quantum corrals  | 
of polar semiconductors 28,  | 
	roughening transition 15, 16,  | 
	188±189, 189, 313(w)  | 
234±235, 235, 258(p)  | 
	258±259(p)  | 
	of GaAs 233±234, 234, 253,  | 
`root-three' 22, 23, 28, 29,  | 
	
  | 
	254, 313(w)  | 
120±124, 141±142(p)  | 
	sample preparation 47±51,  | 
	of Si and Ge(001) 243±249,  | 
of Si and Ge(001) 24±27, 26,  | 
	62(p), 324±325(a)  | 
	246, 250, 313(w)  | 
27, 227, 239±242, 241,  | 
	see also surface preparation,  | 
	of Si and Ge(111) 235±238,  | 
257±258(p)  | 
	in situ experiments  | 
	240, 245, 313(w)  | 
of Si and Ge(111) 27±28,  | 
	sample transfer devices 51±52,  | 
	scanning tunneling  | 
62(p), 235±239, 237, 238,  | 
	53  | 
	spectroscopy (STS)  | 
313(w)  | 
	scanned probe microscopy  | 
	104±105, 233  | 
Wood's notation for 20, 21  | 
	67±69, 68±69, 104±105  | 
	scattering of conduction  | 
see also phases and phase  | 
	see also atomic force  | 
	electrons 281±284, 283  | 
transitions  | 
	microscopy, scanning  | 
	spin-dependent, or spin-Xip  | 
reXection high energy electron  | 
	tunneling microscopy  | 
	284±287  | 
diVraction (RHEED)  | 
	scanning Auger microscopy  | 
	scattering experiments,  | 
57±58, 66, 70±75  | 
	(SAM) 95±104  | 
	classiWcation 63±64  | 
370 Index
Schottky barrier (height)  | 
	semiconductor processing 52,  | 
	denuded zones at 163,  | 
261±274  | 
	57±60, 144, 245±256, 260,  | 
	174±176, 177, 182±183(p),  | 
Bardeen and Schottky  | 
	268, 297±299  | 
	246, 247±248  | 
models 270±271, 273  | 
	and epitaxial growth 57±60,  | 
	dipole moment of 195±197,  | 
linear response and MIGS  | 
	62(p), 144, 245±256, 246,  | 
	196±197  | 
models 271±273, 272±274,  | 
	251, 254, 255  | 
	Ehrlich±Schwoebel barriers  | 
279  | 
	and equipment (IC) failures  | 
	at 176±178, 177,  | 
model solid approach 274,  | 
	52, 297±299  | 
	182±183(p), 253  | 
279  | 
	MOS and CMOS devices  | 
	energy, entropy and stiVness  | 
science and technology,  | 
	260, 268, 298±299  | 
	5±8, 200, 243±249,  | 
relation between 52±54,  | 
	see also chemical vapor  | 
	258±259(p)  | 
144±145, 164  | 
	deposition, molecular  | 
	Xow and mound formation  | 
role of disciplines 299±301  | 
	beam epitaxy  | 
	253±256, 254  | 
screening, and image force  | 
	sensors 135, 301±302  | 
	Xuctuations, movement of  | 
32±33, 33  | 
	serial and parallel processing  | 
	179±180, 200  | 
Lindhard 188, 263  | 
	66, 301  | 
	gas adsorption at 128  | 
Thomas±Fermi 263±264  | 
	signal to noise ratio (SNR) 66,  | 
	on metals 195±197, 200  | 
secondary electron, emission,  | 
	95, 100±104, 106±107(p)  | 
	on semiconductors 243±249,  | 
production 76, 95,  | 
	silicon, see dimer,  | 
	253±256, 258±259(p)  | 
207±210  | 
	reconstruction,  | 
	TLK model 6, 6, 7, 34(p)  | 
imaging (biased-SEI) 95±97,  | 
	semiconductor, substrate,  | 
	stereogram 9, 10, 313(w)  | 
96±97, 104, 176, 209±210  | 
	surface energy  | 
	Stranski±Krastanov (SK)  | 
secondary ion mass  | 
	simulation, see computer  | 
	growth mode, deWnition  | 
spectrometry (SIMS) 64,  | 
	codes and simulations  | 
	146, 146  | 
265, 266  | 
	single electron transistor 284,  | 
	in Ag/Mo(001) and W(110)  | 
segregation, see surface  | 
	293  | 
	165±167, 166, 167  | 
segregation  | 
	solid on solid model 15±19,  | 
	in Ag/Si(001), Ag/Si(111)  | 
self-assembly, self-organization  | 
	16±19, 253±256, 254, 255  | 
	and Ag/Ge(111) 93±95, 94  | 
252±253, 291, 292  | 
	spin-polarized (electron)  | 
	in magnetic multilayers,  | 
semiconductor(s) 24±28,  | 
	213±223  | 
	Fe/Ag/Fe(110) 179±181,  | 
227±259, 260±280,  | 
	band structures 219±222,  | 
	180  | 
289±299  | 
	220±221  | 
	sub-critical clusters 150±153  | 
diamond-like carbon and  | 
	detectors and sources 216  | 
	sublimation energy, values  | 
nanotubes 204±205, 205,  | 
	LEEM 216, 218  | 
	13±15, 13, 14, 120  | 
293±294, 294  | 
	SEM (SEMPA) 216, 217,  | 
	substrate(s), diVusion and  | 
group IV (C, Si, Ge, Sn) 32,  | 
	223, 223  | 
	growth on 144±181  | 
50, 62(p), 227±232,  | 
	Spindt cathodes 204, 205, 294  | 
	diVusion into 179±181  | 
235±252, 264, 277±280,  | 
	sputtering, see ion beam and  | 
	interactive versus inert  | 
289±291  | 
	ion bombardment  | 
	135  | 
hetero-structures and  | 
	step(s), at surfaces 6±7,  | 
	patterned 280, 295  | 
devices 260±280,  | 
	174±180, 195±197, 200,  | 
	preparation of 49±50, 62(p),  | 
297±299  | 
	243±249, 253±256  | 
	159, 323±325(a)  | 
III±V compound (GaAs,  | 
	adatom capture at 17±19,  | 
	Rayleigh wave 127, 127  | 
GaN etc.) 62(p), 230,  | 
	35(p), 163, 174±176,  | 
	rotation, for thin Wlm  | 
232±235, 252±256,  | 
	182±183(p), 245±249, 246  | 
	uniformity 55±56, 55  | 
265±266, 274±280  | 
	as adatom sources 176±179,  | 
	see also alkali halide,  | 
wide band-gap, II±VI (ZnS,  | 
	178  | 
	Xuoride, graphite, mica,  | 
etc.) and IV±VI 230, 235,  | 
	atomistic versus continuum  | 
	oxide, and noble,  | 
252±253, 256, 291±293  | 
	models, 182±183(p),  | 
	refractory or transition  | 
see also graphite,  | 
	255±256  | 
	metals  | 
reconstructions,  | 
	decoration of, nucleation at  | 
	superconductivity 190,  | 
semiconductor processing  | 
	174±176, 175, 177  | 
	224±225(p), 281  | 
Index  | 
	
  | 
	371  | 
  | 
	
  | 
	
  | 
supersaturation, Dm 15±19,  | 
	of Si and Ge(111) 235±239,  | 
	driving force for crystal  | 
17±19, 34(p), 147±149,  | 
	244±245  | 
	growth 15±19, 34(p)  | 
147, 149, 193  | 
	and tension 3±5, 9, 200,  | 
	equilibrium with vapor  | 
surface analysis techniques  | 
	256  | 
	11±15, 34(p)  | 
63±105, 306±308(a)  | 
	in TLK model 5±7, 34(p)  | 
	formulae and potentials 1±4,  | 
classiWcation as scattering  | 
	values for metals 196±200,  | 
	314±317(a)  | 
experiments 63±64  | 
	198  | 
	versus kinetic argument  | 
diVraction conditions for  | 
	surface phonons 74±75,  | 
	9±19  | 
scattering 70, 105±106(p)  | 
	105±106(p), 127±128, 127  | 
	techniques 64, 115±118,  | 
sensitivity, via inelastic  | 
	see also vibrations  | 
	115±117, 125, 128  | 
mean free path 64, 87±90,  | 
	surface preparation and  | 
	thin Wlm deposition 54±60, 55,  | 
89, 93±94, 94, 104  | 
	cleaning 47±50, 62(p),  | 
	56, 58, 59  | 
see also electron diVraction,  | 
	323±325(a)  | 
	by sputtering and ion-beams  | 
electron spectroscopy,  | 
	surface segregation 179±181,  | 
	57±59  | 
microscopy, X-ray  | 
	180, 251±252, 278±279  | 
	by thermal and electron  | 
diVraction  | 
	surface stress, strain 4, 193,  | 
	beam evaporation 54±57,  | 
surface diVusion 16±17, 139,  | 
	242±244, 249±252  | 
	55, 56, 61(p)  | 
147, 167±181, 206±208,  | 
	surface structure, steps see  | 
	see also chemical vapor  | 
243, 246±251  | 
	reconstructions, steps,  | 
	deposition, crystal  | 
adatom hopping 16±17, 147,  | 
	vicinal surfaces  | 
	growth, epitaxial growth,  | 
167±172  | 
	surface tension, see surface  | 
	molecular beam epitaxy  | 
and current Xuctuations  | 
	energy  | 
	tight-binding method 190,  | 
206±208, 208  | 
	surface thermodynamics 1±9,  | 
	230±231, 257±258(p),  | 
eVect of strain 171,  | 
	314±317(a)  | 
	328±330(a)  | 
178±179, 243  | 
	surface vacancies, pits 7,  | 
	transistors, high electron  | 
exchange mechanism 168,  | 
	174±34, 175, 177±178,  | 
	mobility 280  | 
171±172  | 
	183(p)  | 
	single electron 283±284  | 
FIM studies 167±169, 168,  | 
	surfactants 153±154, 250  | 
	transition metals (Fe, Co, Ni,  | 
171±172, 176  | 
	symmetry and symmetry  | 
	Cr etc.)  | 
in Ostwald ripening  | 
	breaking 210±213, 300  | 
	(band) structures and  | 
176±179, 183(p)  | 
	synchrotron radiation facilities  | 
	magnetism 218±222,  | 
mass transfer 139, 176,  | 
	37±38, 51±53, 71, 78±81,  | 
	220±221, 226(p)  | 
183(p)  | 
	313(w)  | 
	cohesive energies 190±192,  | 
for Si and Ge/Si(001) 243,  | 
	for angular resolved UPS  | 
	192, 218±219  | 
246±251  | 
	and XPS, 78±81, 78  | 
	small particle growth  | 
see also interdiVusion  | 
	sample transfer device for  | 
	161±164, 162  | 
surface electronic terms 30±33,  | 
	51±52, 53  | 
	spin-dependent scattering  | 
31, 32  | 
	for surface X-ray diVraction  | 
	285±287, 286  | 
surface (free) energy 1±9,  | 
	51±52, 53, 71  | 
	as substrates 118, 171±173,  | 
145±149, 196±200,  | 
	and vacuum design 37±38,  | 
	179±181  | 
235±245, 249  | 
	61(p), 313(w)  | 
	surface energies 219,  | 
anisotropy, g-plots 5, 7±9, 8,  | 
	
  | 
	226(p)  | 
10, 11, 198±200, 244±245  | 
	terrace±ledge±kink (TLK)  | 
	surface preparation 49±50,  | 
entropy 4, 9, 200, 243±245,  | 
	model 5±7, 6, 7, 34(p)  | 
	62(p)  | 
258±259(p)  | 
	thermal desorption  | 
	transmission high energy  | 
experiment-theory  | 
	spectroscopy (TDS)  | 
	electron diVraction  | 
comparison 198±200  | 
	127±128, 127  | 
	(THEED) 66, 72±75, 136,  | 
in nucleation and growth  | 
	thermal-Weld emission (TFE)  | 
	292  | 
models 145±149, 147,  | 
	206±207, 209  | 
	of adsorbed Kr and Xe/  | 
149  | 
	thermionic emission 200±202,  | 
	graphite 120±121,  | 
of Si and Ge(001) 239±243,  | 
	225(p), 261  | 
	125±126  | 
249  | 
	thermodynamic  | 
	and Si(111) structure 236  | 
372 Index
transmission electron  | 
	eVect on vapor pressure  | 
	at Si and Ge(001) surfaces  | 
microscopy (TEM)  | 
	34±35(p)  | 
	239±242, 241, 258±259(p)  | 
65±66  | 
	vacancy line defects 250, 252  | 
	techniques for measuring  | 
of deposited metals  | 
	vacancy model of Si(001) 27  | 
	127±128, 134  | 
135±137, 136, 157±159,  | 
	vacuum, kinetic theory of  | 
	see also Einstein model  | 
158, 174±176, 175, 177  | 
	36±38, 39  | 
	vicinal surface, deWnition 7±9,  | 
of nanometer scale devices  | 
	conductance and pumping  | 
	7, 8  | 
287±294, 288, 292, 294  | 
	speed 39±42, 40, 41  | 
	semiconductor growth on  | 
of semiconductor interfaces  | 
	gauges 46±47  | 
	245±256, 246, 251, 254,  | 
250±251, 251, 265  | 
	see also ultra-high vacuum  | 
	255  | 
  | 
	valence band oVset 273±279  | 
	see also crystal growth, steps  | 
ultra-high vacuum (UHV)  | 
	Van der Waals energy, force  | 
	at surfaces  | 
36±54, 60±61(p), 313(w),  | 
	108, 160  | 
	Volmer±Weber growth mode  | 
318±325(a)  | 
	Lennard±Jones potentials  | 
	146, 146  | 
bakeout procedures 40,  | 
	for 23±25, 24, 114, 114  | 
	volumetric measurements  | 
45±47, 48  | 
	vapor pressure 11±15,  | 
	115±118, 115±117, 126  | 
and clean surface  | 
	34±35(p), 45±46, 55±56,  | 
	
  | 
preparation 38, 47±50,  | 
	61(p), 156, 313(w),  | 
	Walton relation 151, 183(p)  | 
323±325(a)  | 
	320±322(a)  | 
	Wentzel±Kramers±Brillouin  | 
gas composition 46±47, 48,  | 
	eVects of vibrations and  | 
	approximation  | 
52  | 
	vacancies 34±35(p)  | 
	225±226(p)  | 
hardware and system design  | 
	and evaporation (Knudsen)  | 
	Wigner±Seitz sphere, radius rs  | 
38, 42±45, 60±61(p),  | 
	sources 55±56, 61(p)  | 
	185±188, 188, 196±198,  | 
318±319(a)  | 
	of materials for use in UHV  | 
	198, 224±225(p)  | 
materials for use in, 45±46,  | 
	45±46, 313(w), 320±322(a)  | 
	work function 30±31, 95±97,  | 
313(w), 320±322(a)  | 
	and nucleation models 156  | 
	185±188, 195±196,  | 
molecular density and mean  | 
	quasi-harmonic model  | 
	209±210  | 
free path 37±38, 39  | 
	11±13, 13  | 
	of adsorbates 95±97, 96±97,  | 
and particle accelerators  | 
	values for selected elements  | 
	195±196, 196, 209±210  | 
37±38, 61(p), 313(w)  | 
	13±15, 13, 14  | 
	deWnition 30, 31  | 
and production processes  | 
	vibrations (of atoms,  | 
	in jellium model 185±188,  | 
52±54  | 
	molecules, at surfaces,  | 
	188  | 
pump types and  | 
	etc.)  | 
	measurement methods 193  | 
performance, speed  | 
	adlayer±substrate coupling  | 
	and patch Welds 193±195,  | 
43±45, 319(a)  | 
	127±128, 127  | 
	209  | 
system pressure 39±40, 39,  | 
	anharmonic 22±25, 114,  | 
	and secondary electrons  | 
42, 46±47, 48  | 
	125, 192, 239±242, 241,  | 
	95±97, 96±97, 209±210  | 
transfer devices 51±52,  | 
	258±259(p)  | 
	and steps 195±197,  | 
53  | 
	Debye model 128  | 
	196±197  | 
uniaxial anisotropy 212±213  | 
	and desorption 16±17,  | 
	values 186, 188, 193±197  | 
units and conversion factors  | 
	34(p), 128  | 
	WulV construction, theorem  | 
309±311(a)  | 
	of Kr and Xe on graphite  | 
	7±9, 8  | 
monolayer (ML) and arrival  | 
	and metals 120, 122±128,  | 
	
  | 
time 38, 39  | 
	126, 127  | 
	X-ray, diVraction from surface  | 
pressure 37  | 
	in oxygen chemisorption 134  | 
	30, 51±52, 53, 64, 71,  | 
universality classes 211±212  | 
	partition functions for  | 
	105±106(p), 236  | 
  | 
	109±114, 142±143(p)  | 
	Xuorescence, total reXection  | 
vacancies, eVect on diVusion  | 
	quasi-harmonic 11, 25, 114  | 
	(TXRF) 269  | 
176, 183(p)  | 
	of Si and Ge 231  | 
	XY model 129, 211  | 
