Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Venables - Introduction to surface and thin film processes.pdf
Скачиваний:
58
Добавлен:
08.01.2014
Размер:
6.43 Mб
Скачать

Index

Note: Page numbers for text references are in upright type, whereas page numbers for Wgures are in sloping type. Problems and projects are indicated (p), appendices are indicated (a), with Appendix D indicated (w) for web. Not all techniques and acronyms are indexed; see Appendix B for a guide.

acronyms 64, 69±70,

models of 185±191, 187,

peak height, peak to

306±308(a)

188, 191, 224±225(p)

background ratio 88±91,

ad-atoms

surface energy values

90±91

and ad-dimers on Si and Ge

196±200, 198

quantiWcation of 88±95,

235±242, 240, 241,

work function values 186,

89±91, 94

245±249, 246, 248,

188, 193±196

ratio techniques for 92±104,

258±259(p)

alkali halide substrates

94, 97, 99

in TLK model 7, 34(p)

157±161, 158, 174±176,

and sample cleaning 50, 80

see also adsorption,

175

standards and consulting

nucleation and growth,

Anderson±Grimley±Newns

organizations 92,

surface diVusion

model 130±132, 131,

312±313(w)

ad-layer structures 19±22, 28,

143(p)

signal to noise ratio (SNR)

21, 23, 29, 120±125, 121,

anharmonicity, see vibrations,

in 95, 98, 100±104, 102,

123, 128±134, 130,

anharmonic

103, 106±107(p)

141±142(p)

Askin±Teller model 129

see also scanning Auger

adsorption 108±143, 146±147,

atomic force microscopy

microscopy

206±210

(AFM) 67±70, 68±69,

 

at low coverage 109±113,

105

bakeout procedures 40, 45±47,

111

Auger electron spectroscopy

48

chemisorption versus

(AES) 50, 63±64, 76±104

ballistic electron emission

physisorption 108±109

of adsorbed layers 118±119,

microscopy (BEEM) and

versus crystal growth

119, 137±139, 138

spectroscopy 266±268,

118±119, 146±147, 146,

analyzers and spectra 76±79,

267±269

147

76±79, 81±87, 84, 86±87,

bamboo structures 297

and electron emission

99±104, 99±101

band alignment and oVsets

206±210, 206, 208±209

backscattered electrons,

272±279, 273±275

equilibrium conditions for

backscattering factor 76,

band bending 32, 32, 209,

114±118

88±92, 90, 97±99, 97

260±265, 261, 264

Henry law 110±113

eYciency and X-ray

band-gap engineering

Langmuir isotherm

Xuorescence yield 82±84,

274±280, 291

109±110, 111

85

band structure calculations

at steps 128

energies and atomic physics

190±193, 219±222,

virial expansions 113±114

81±84, 82±84

227±232, 326±330(a)

see also ad-atoms, ad-layer,

energy shifts and lineshapes

spin-polarized 219±222, 220,

chemisorption,

84±87, 86, 87

221

desorption, physisorption

growth mode analysis

tight-binding 230±232,

alkali and s-p bonded metal

92±95, 94, 179±181, 180

257±258(p), 328±330(a)

(adatoms, clusters,

L±S versus j±j coupling 82,

Bessel functions 152, 182(p),

surfaces, etc.)

83

190, 225(p)

adsorption of 195±196,

inelastic mean free path

bonding and bond angles

206±210, 206

87±90, 89, 93±94, 94,

due to d-bands 191±193,

clusters 186±188, 187

104

192, 218±222, 226(p)

363

364 Index

bonding and bond angles

oxidation reactions 133±134,

versus adsorption 118±119,

(cont.)

137±141, 138, 140

145±147, 146, 147

in metals 190±3, 196±200,

and painters 134

and dislocations 15, 17, 18,

218±222

precursor stage of 108

19, 147, 246±251, 251,

in semiconductors 227±242

cleave, cleavage 3, 49, 236

268±269, 269

and s-p hybridization

cluster density, size see

from the liquid 17±18

227±229, 257±258(p),

nucleation and growth

repeatable step in 6

328±330(a)

coalescence 151±152, 153, 154,

of semiconductors 245±256,

bond counting 5±15

157, 158, 179

246, 251, 254, 255

in crystals 8±9, 10, 33±34(p)

cohesion, cohesive energy,

at steps, and the

in nucleation models 145,

function see bonding,

condensation coeYcient

155±156

sublimation energy

35(p), 174±179, 175, 177,

in polar semiconductors

compressibility, isothermal

181±182(p)

235, 258(p)

115±116, 117

supersaturation for 15±19,

in TLK model 5±7, 6, 7,

computer codes and

17, 18, 19, 34(p), 247±252

33±34(p)

simulations 150, 156±157,

see also chemical vapor

bond orientational order

193, 236, 313(w),

deposition, epitaxial

124±125

327±328(a)

growth, molecular beam

boron nitride, pyrolytic 56

see also eVective medium

epitaxy, nucleation and

Brillouin zone 31±32, 31, 232

theory, molecular

growth, thin Wlm

 

dynamics, Monte Carlo

deposition procedures

capture numbers 151±155, 155,

condensation

crystallographic notation 8±9,

182(p)

coeYcient, 181±182(p)

312±313(w)

catalysis 52±54, 128, 135±141

regimes 152±155, 155

cubic anisotropy 212

on d-band metals 143(p)

conductance, conductivity

 

industry 52±54, 135

of semiconductors 280±281,

delta-doped layers 265±266,

small metal particle (SMP)

283±284

266, 278

52±54, 135±137, 136,

of thin (metal) Wlms

demagnetizing energy, Weld

137

280±287

212

spatio-temporal reactions

of vacuum pipes 41±42, 41,

density functional theory

139±141, 140

44±45, 318(a)

(DFT) 184±199, 275,

see also chemisorption

conWgurational entropy 34(p),

326±327(a)

cell model, for adsorbed layers

109±110, 130, 258±259(a)

of chemisorption 133, 170

113±114, 126, 126

conversion factors 309±311(a)

eVective medium theory

quantum 114, 114, 126

Coulomb blockade 284, 293

(EMT) 133±134, 165±166,

chemical synthesis and

critical cluster, or nucleus, size

170±171, 191±193, 192

materials development

148±157, 155

embedded atom methods

289±295

critical phenomena, points and

(EAM) 133, 191

chemical vapor deposition

exponents 115, 129±130,

jellium model 184±190, 185,

(CVD) 52, 59±60,

211±212

187±188, 195±196, 198,

252±256, 289±291, 300

crystal surfaces and interfaces,

224±225(p)

and gas purity 52, 59

introduction 5±17

local density approximation

modeling of, 252±256, 300

melting transition 15

(LDA) 186, 231,

and precursor molecules

rough surfaces, roughening

326±327(a)

289±291, 290

transition 7, 15, 16, 17

denuded zones, at steps 163,

thin Wlm production

simple models of 5±9, 6, 7

174±176, 177, 182±183(p),

methods 59±60, 59

singular, smooth 7±9,17

246, 247±248

chemisorption 108±109, 114,

see also reconstruction, solid

depletion layer or region 260,

118, 128±141

on solid model, vicinal

263±265, 265

and catalysis 135±141

surface

desorption, and adsorption 16,

on d-band metals 143(p)

crystal growth (kinetics)

34±35(p), 118±119

Newns±Anderson model

15±19, 54±60, 144±181,

and bakeout procedures

130±132, 131, 143(p)

245±256

40

Index

 

365

 

 

 

and catalytic reactions

stripe 22, 122

electron emission 76±104,

135±141, 137

walls 22, 23, 122±125

200±210, 261±263

spectroscopy, thermal (TDS)

 

adsorption eVects on

127±128, 127

eVective medium theory

206±210, 206, 208±209

diamond-like carbon (DLC)

(EMT) 133±134, 165,

cold Weld (CFE) 202±206,

cathodes 204, 205, 294

170±171, 191±193, 192,

203, 204±205, 225±226(p)

diVusion, in alloys 183(p)

200

Xuctuations and diVusion

bulk versus surface 251

eVusion sources 56±58, 56, 58

206±208, 208

chemical, or mass transport

Ehrlich±Schwoebel barrier

secondary 76, 76, 95±97, 96,

139, 176±177, 183(p)

176±178, 177, 182±183(p),

97, 207±210

intrinsic 16, 183(p)

253

thermal 200±202, 225(p),

see also interdiVusion,

Einstein model (of vibrations)

261±262, 261±263

surface diVusion

13±15, 110±113, 120,

thermal Weld (TFE)

dimer-adatom-stacking fault

126±127, 156

206±207, 209

(DAS) model 28±29,

in adsorbed layers 110±113,

see also electron

235±239, 237, 238, 240

111, 120, 126±127

spectroscopy

dimer(s), and adatoms on Si

in nucleation models 156

electron energy loss

245±249, 248, 259(p)

in vapor pressure 13±15, 13,

spectroscopy (EELS) 76,

asymmetric 25, 239±242,

34±35(p)

77, 203, 204

241

electromigration 297±299

high resolution (HREELS)

and dimer rows on Si(001)

electron aYnity and ionization

134, 105±106(p)

25±27, 26, 27, 239±242,

potential 30±31, 31

electron gas, charge density

241, 246

negative electron aYnity

waves in 190, 224±225(p)

rotation and migration of

(NEA) 32, 216

density (Friedel) oscillations

246, 247±249

electron beam evaporation

in 185, 186±190, 187, 189,

Si2 and Ge2 231

56

224±225(p), 263, 327(a)

vacancy row structures 250,

electron beam lithography

exchange-correlation energy

252

95

185±186, 195, 326±327(a)

dipole layers in

electron beam sample heating

free electron models

semiconductors 260,

49

184±190, 189

272±273, 273, 279

electron density see electron

and ionic lattice 190±193,

dipole moment, layer,

gas

191, 192

deWnitions 195±196

electron diVraction 20±30,

jellium model 184±190, 185,

Xuctuating 108

63±76, 120±125, 243±246,

187±188, 195±196, 198,

and work function 195±197,

253±255

224±225(p)

196±197

and defects, domains 75,

see also density functional

diodes, forward and reverse

122±125, 123, 243±245,

theory

bias 260±263, 261±263

244

electron holography 75,

disciplines, role of 299±301

dynamical theory of 66, 71,

212±213

disclinations 125

75, 105±106(p)

electron microscopy 65±66,

dislocations, and electrical

inelastic scattering in,

95±104, 139±141,

activity 268, 269

74±77, 106(p)

157±159, 165±167,

misWt 122±125, 147, 171,

LEED and SPA-LEED

212±224, 250±251,

246±251, 251, 268±269,

20±28, 63±64, 70±76, 71,

287±294

269

106(p), 120±125, 123,

low energy (LEEM) 66,

screw 15, 17, 19

243±245, 244

165±167, 218, 245, 247

threading 125

reXection high energy

in magnetism 212±218,

domain(s), and LEED

(RHEED) 66, 70±75, 72,

214±215, 217±218,

patterns 120±122, 123,

72±75, 237, 246, 253±255,

223±224, 223

243±244, 244

254, 255

photo- (PEEM) 66,

eVect of strain 243±244, 244

transmission high energy

139±141, 140

on Si(001) 22, 24±27, 26,

(THEED) 66, 72±75,

reXection (REM) 65±66,

243±244, 244

120±126, 235±236

65

366 Index

electron microscopy (cont.)

on Si and Ge(001) 242,

giant magneto-resistance

transmission (TEM) 65±66,

245±252, 246, 251

(GMR) 179, 224,

65, 135±137, 136,

three modes of 145±147,

284±288, 286

157±159, 158, 265,

146, 147

Gibbs' dividing surface 1±2, 2

287±294

see also chemical vapor

graphite 23, 56, 115±127,

scanning transmission

deposition, crystal

141±142(p), 227±229

(STEM) 65, 66, 100±104,

growth, molecular beam

growth modes 92±95, 145±147,

100, 103, 250±251, 251

epitaxy, thin Wlm

146, 179±181

see also ballistic electron

deposition procedures

AES analysis of 92±95, 94,

emission microscopy,

epitaxy, deWnition 144

179±181, 180

scanning Auger

strained layer 249±252

see also epitaxial growth,

microscopy, scanning

equilibrium form, shape see

nucleation and growth

electron microscopy

surface energy

 

electron sources 200±207, 216

exchange-correlation energy,

helium atom scattering (HAS)

brightness of 201±202

hole 185±186, 195, 219,

105±106(p), 127±128, 127

LaB6 202, 207, 209

326±327(a)

Heisenberg Hamiltonian 211

Spindt and DLC cathodes

 

Henry law adsorption 110±112

204±205, 205

faceting 8, 200, 245

hexatic phase 124±125

spin-polarized 216

Fermi±Dirac energy

Hubbard models 87, 131

W-Wlament 201

distribution 186, 203,

hybridization (s-p) 227±229,

W(310) and (111) tips 203,

225±226(p), 281

257±258(p), 328±330(a)

204, 206

Fermi sphere, surface 188±189,

 

Zr/O coated W(001) 207

189, 225(p)

in situ experiments 50±51,

electron spectroscopy 76±104

ferroand antiferro-magnetism

165±181

analyzers for 76±81, 78

210±224

in situ growth results 161±181

for chemical analysis

Weld emission 202±207

in situ transfer devices 51±52,

(ESCA) 76

cold (CFE) 202±206, 203,

53

and magnetic domains

204±205, 225±226(p)

interdiVusion 147, 179±181,

215±216

microscopy (FEM) 206±207,

180, 183(p)

see also Auger electron

206, 208

integrated circuit (IC) 298, 301

spectroscopy, electron

spectroscopy (FES) 203,

metal interconnects in

energy loss spectroscopy,

204, 207, 209

297±299

photoelectron

see also electron sources

ion beam assisted deposition

spectroscopy

Weld ion microscopy (FIM) 66,

(IBAD) 58

electron spin resonance (ESR)

167±169, 168, 171±172,

ion beam sputtering and

268±269, 270

176, 203

sputter deposition 57±59

ellipsometry 140

Xuoride substrates 160±164,

ion beam surface techniques

embedded atom methods

162

64

(EAM) 133, 191

Fowler±Nordheim equation,

ion bombardment (sputter)

epitaxial growth 54, 57±60,

plot 202±203, 225±226(p)

cleaning 50, 53, 57

144±181, 242, 245±256

Frank±van der Merwe growth

Ising model 128±129, 210±211

and adsorption 146±147,

mode 145±146, 146

isobar, isostere, isotherm

146, 147

Friedel oscillations 132, 185,

116±118, 126

of compound

186±190, 187, 189,

isosteric heat of adsorption

semiconductors 252±256,

224±225(p), 263, 327(a)

117±118, 316±317(a)

254, 255

 

isothermal compressibility

and device production 54,

gallium arsenide, nitride, see

115±116, 117

57±60, 58, 59, 144±145,

semiconductors (III±V)

 

246, 250, 256

germanium, see dimer,

jellium model 184±190, 185,

multilayer, rough 254, 256

reconstruction,

187±188, 195±196, 198,

rate equation models of

semiconductor, substrate,

224±225(p)

149±157, 153, 155, 156

surface energy

journalists, role of 298±299

Index

 

367

 

 

 

Kerr eVects 213±215, 214±215,

low energy electron

Mermin±Wagner theorem

287

microscopy (LEEM) 66,

210±211

kinetic Monte Carlo (KMC)

165±167, 245

metal(s) 9±12, 15, 22±23,

simulation 150, 156±157,

and ad-dimers on Si(001)

135±137, 184±224

156, 253±256, 254, 255

247, 248

d- and f-band 190±193, 192,

kinetic theory, in relation to

spin polarized (SPLEEM)

218±222, 220±222

vacuum 36±39, 39

216, 218

electronic structure models

Knudsen evaporation source

 

184±200

53, 56, 61(p)

magnetic circular dichroism

small metal particle

Knudsen Xow regime and

(MCD) 214±215

(catalysts) 135±137, 136

number 42

magnetic force microscopy

s-p bonded 188, 190±200,

Kossel crystal 6±9, 7, 14, 16,

(MFM) 213, 216±218

198

34(p)

magnetic multilayer devices

sublimation energies 15

Kosterlitz±Thouless

144, 179±181, 222±224,

surface energies 9, 11±12,

dislocations 125

284±289

196±200, 198

 

coupling in 222±224, 223

surface structures 22±23,

Langmuir adsorption isotherm

interdiVusion in 179±181,

192±193

109±110, 111

180

work function of 188,

lattice gas models 128±130,

spin-dependent scattering in

193±196, 197

130

284±287

see also alkali, noble,

ledges and kinks, in TLK

magnetic surface techniques

transition, refractory

model 6±7, 6, 7

213±218, 214±215, 217,

(metals), nucleation and

LEED, see low energy electron

218

growth

diVraction

magneto-crystalline anisotropy

metal-induced gap states

Lennard±Jones cell model

212

(MIGS) 271±273, 274,

113±114, 114, 126,

magneto-elastic anisotropy,

278±279

126

magnetostriction

metal±oxide±semiconductor

Lennard±Jones potentials

212±213

(MOS and CMOS)

23±25, 24, 114, 114

magneto-optic Kerr eVects

devices 260, 268, 298±299

Lindhard screening 188, 263

(MOKE and SMOKE)

metal±semiconductor

local density approximation

213±215, 214±215, 287

interactions 260±263,

(LDA) see density

magneto-resistance, giant

267±274, 298±299

functional theory

(GMR) 179, 224,

Ag or Au/Si or Ge(111) 28,

local spin density (LSD)

284±287, 286

29, 72, 74, 298

approximation 219±222,

magnons 210±211

Ag/Si(001) 93±95, 94,

220±221

mass spectrometry, and gas

101±102

Lorentz microscopy 212±213

composition 47, 48, 62(p)

Al±Si±(SiO2) 262, 263, 298

low energy electron diVraction

mean free path, inelastic (imfp)

CoSi2±Si 267±269, 268, 269

(LEED) 20±30, 63±66,

64, 87±90, 89, 93±94, 94,

Cu±Si 299

70±76

104

mica substrate 137, 161,

of adsorbed layers 119±123,

mean free path versus

282±283, 283

123, 130

attenuation length 93, 104

microscopy techniques 65±69,

of domains 122, 123,

mean free path for molecular

65, 68±69

243±245, 244

collisions 37±38, 39

see also electron microscopy,

geometry and

melting of adsorbed layers

scanned probe

instrumentation 53,

115±117, 115, 116,

microscopy, scanning

70±71, 71, 106(p)

124±125

Auger microscopy,

I±V analysis 71, 106(p), 232,

melting of aligned hexatic

scanning electron

236

phase 124±125

microscopy

spot proWle analysis (SPA-

melting transition, at crystal

MIDAS project 100±104,

LEED) 70, 75, 165, 172,

surfaces 15, 139,

100±103, 214±215,

246

258±259(p)

214±215

368 Index

misWt dislocations 122, 171,

growth mode analysis

phases and phase transitions,

249±251, 251, 268, 269

92±95, 94, 179±181, 180

diagrams 20±22, 114±130,

molecular beam epitaxy

metals on insulators

210±213

(MBE) 57±58, 252±256

157±164, 158, 162

commensurate/

of compound

metals on metals 165±174,

incommensurate 20±22,

semiconductors 252±256,

166±168, 170, 172±173

21, 23, 120±124, 121,

254, 255

on semiconductors 245±256,

123

and thin Wlm deposition 53,

246, 251, 254

hexatic 124±125

57, 58, 62(p)

nucleation and growth models

of Kr and Xe on graphite

molecular dynamics (MD) 25,

145±157, 161±164,

22, 23, 115±127, 115±117,

133±134, 239±242, 241

246±249, 252±255

119, 121, 126, 141±143(p)

monolayer (ML), deWnitions

atomistic 145, 147, 149±157,

of Kr and Xe on metals 122,

and units 38, 39, 112

153, 155±156

127±128, 127

Monte Carlo (MC) simulation

capture numbers in 151±155,

lattice gas models 128±130,

of adsorption 114, 125, 129

155, 182(p)

130

of electron scattering in

classical 145±149, 147,

in monolayer adsorbates

solids 3.28

149

119±128, 119, 121, 123,

kinetic (KMC) of epitaxial

cluster density formulae

126, 196

growth 150, 156±157, 156,

150±157

of Ne and Ar on graphite

253±256, 254, 255

cluster growth rate

122, 123, 124, 126

of solid on solid model

181±182(p)

and symmetry breaking

14±19, 16±19, 253±256,

cluster size distributions

210±213

254, 255

150±152, 156±157, 156

phosphors 295

multilayer growth models 254,

including defects 161±164,

photoemission 76±81, 84±87,

255±256

163, 164

86

multiply twinned particles 137

nucleation rate 150±152,

circularly polarized

 

157

214±215

nanotubes 293±294, 294

for reconstructed

photoelectron spectroscopy

Newns±Anderson model

semiconductors 246±249,

76±81, 84±87, 86

130±132, 131, 143(p)

252±255

angular resolved (AR)UPS

noble metals (Cu, Ag, Au, Pd,

nucleation density, rate see

76±81

Pt, etc.)

nucleation and growth

energy shifts and lineshapes

adsorption on 118, 127±128,

 

84±87, 86, 105±106(p)

127, 133±141, 140

opto-electronic devices

ultraviolet (UPS) and X-ray

as catalysts 52±54, 135±137,

274±280, 291±293

(XPS) 76, 79±80

139±141, 140

Ostwald ripening 176±179,

see also synchrotron

oxide structures on 20, 21,

183(p)

radiation

104, 133±134, 137±141,

oxide substrates 135±137,

photoluminescence 275, 293

140

161±164

physisorption 108±128

resistivity of 282±283, 283

oxide surface structures 30,

of rare gases on graphite

as substrates 118, 170, 172,

164

109±127, 141±143(p)

176, 179±181, 188±189,

oxygen chemisorption 20, 21,

see also phases and phase

189

133±135, 137±141, 138,

transitions

surface energy and stress

140

plasmon, bulk and surface,

196±200, 243

 

deWnition 31

surface structure 22±23,

particle accelerators, vacuum

plasmon loss processes 74±76,

192±193, 198

design 37±38, 61(p),

88

work function 193±194, 197

313(w)

point defects, interfacial 265,

nucleation and growth

passivation by oxides 134

268±269, 269

experiments 92±95,

patch Welds 193±195, 209

see also vacancies

157±174, 179±181,

pattern formation 171, 253,

Potts models 28, 129

245±256

254, 295

pressure gauge types 46±47

Index

 

369

 

 

 

pressure measurement, total

diVuse scattering from

of complex (real world)

and partial 39±42, 46±47,

adatoms 237

samples 98±99, 99

48

geometry and patterns

at high resolution 100±104,

pressure units and conversion

72±74, 72±74, 250

100±103

factors 37, 39, 310(a)

growth and intensity

ratio techniques for 92±102,

pseudopotentials, metals 184,

oscillations 57±58, 246,

97, 99

190±194, 191, 195±199,

253±255, 254, 255

SNR problems 66, 95,

198

as in situ diagnostic tool 53,

100±104, 106±107(p)

pseudopotentials,

57±58, 58, 253±255, 255

scanning electron microscopy

semiconductors 230±232,

refractory metals (Nb, Mo, W,

(SEM) 65, 66, 76,

329±330(a)

etc.)

95±104

pump-down equation 39±40,

adsorption and diVusion on

analytical versus image

40

165±169, 168, 196,

resolution 100±104, 103

pumps and pumping 43±45,

205±210, 206, 208

in situ growth 158, 159,

318±319(a)

as electron sources 201, 203,

165±167, 166, 167,

 

204

179±181, 180, 250±251,

quadrupole mass spectrometry

metal layers on 95±97, 96,

251

(QMS) 47, 48, 62(p)

97, 165±169, 166, 216, 218

with polarization analysis

quantum, cell model 114, 114,

surface energy 199

(SEMPA) 216, 217, 223,

126

surface preparation 49±50

223

conduction 280, 301

for thermal evaporation 54

in transmission (STEM) 65,

corrals 188±189, 189, 313(w)

work function 193±196,

66, 100±104, 100, 103,

dots and wires 250, 279±280

197

250±251, 251

size eVect 222±223

residual gas analysis 46±48

in UHV, surface sensitivity

well lasers 274±275, 276,

partial pressure, gas

95±98, 96±97, 166,

278

composition

250±251, 251

 

measurement 46±47

see also secondary electron

Raman scattering 276

QMS instrument and

scanning tunneling microscopy

reconstructions (of surfaces

spectra 47, 48

(STM) 67, 68, 104±105,

and adsorbates) 19±30,

resistance, resistivity, of thin

313(w)

120±124, 192±193,

Wlm devices 280±287

in situ nucleation and

227±242, 313(w)

RHEED, see reXection high

growth 169±174, 170, 172,

of adsorbates 20±22, 21, 23,

energy electron diVraction

173, 177±179

120±124

Richardson±Dushman

models of operation

of ionic crystals 30

equation 200±201, 225,

225±226(p)

of metals 22±23, 192±193

261

of quantum corrals

of polar semiconductors 28,

roughening transition 15, 16,

188±189, 189, 313(w)

234±235, 235, 258(p)

258±259(p)

of GaAs 233±234, 234, 253,

`root-three' 22, 23, 28, 29,

 

254, 313(w)

120±124, 141±142(p)

sample preparation 47±51,

of Si and Ge(001) 243±249,

of Si and Ge(001) 24±27, 26,

62(p), 324±325(a)

246, 250, 313(w)

27, 227, 239±242, 241,

see also surface preparation,

of Si and Ge(111) 235±238,

257±258(p)

in situ experiments

240, 245, 313(w)

of Si and Ge(111) 27±28,

sample transfer devices 51±52,

scanning tunneling

62(p), 235±239, 237, 238,

53

spectroscopy (STS)

313(w)

scanned probe microscopy

104±105, 233

Wood's notation for 20, 21

67±69, 68±69, 104±105

scattering of conduction

see also phases and phase

see also atomic force

electrons 281±284, 283

transitions

microscopy, scanning

spin-dependent, or spin-Xip

reXection high energy electron

tunneling microscopy

284±287

diVraction (RHEED)

scanning Auger microscopy

scattering experiments,

57±58, 66, 70±75

(SAM) 95±104

classiWcation 63±64

370 Index

Schottky barrier (height)

semiconductor processing 52,

denuded zones at 163,

261±274

57±60, 144, 245±256, 260,

174±176, 177, 182±183(p),

Bardeen and Schottky

268, 297±299

246, 247±248

models 270±271, 273

and epitaxial growth 57±60,

dipole moment of 195±197,

linear response and MIGS

62(p), 144, 245±256, 246,

196±197

models 271±273, 272±274,

251, 254, 255

Ehrlich±Schwoebel barriers

279

and equipment (IC) failures

at 176±178, 177,

model solid approach 274,

52, 297±299

182±183(p), 253

279

MOS and CMOS devices

energy, entropy and stiVness

science and technology,

260, 268, 298±299

5±8, 200, 243±249,

relation between 52±54,

see also chemical vapor

258±259(p)

144±145, 164

deposition, molecular

Xow and mound formation

role of disciplines 299±301

beam epitaxy

253±256, 254

screening, and image force

sensors 135, 301±302

Xuctuations, movement of

32±33, 33

serial and parallel processing

179±180, 200

Lindhard 188, 263

66, 301

gas adsorption at 128

Thomas±Fermi 263±264

signal to noise ratio (SNR) 66,

on metals 195±197, 200

secondary electron, emission,

95, 100±104, 106±107(p)

on semiconductors 243±249,

production 76, 95,

silicon, see dimer,

253±256, 258±259(p)

207±210

reconstruction,

TLK model 6, 6, 7, 34(p)

imaging (biased-SEI) 95±97,

semiconductor, substrate,

stereogram 9, 10, 313(w)

96±97, 104, 176, 209±210

surface energy

Stranski±Krastanov (SK)

secondary ion mass

simulation, see computer

growth mode, deWnition

spectrometry (SIMS) 64,

codes and simulations

146, 146

265, 266

single electron transistor 284,

in Ag/Mo(001) and W(110)

segregation, see surface

293

165±167, 166, 167

segregation

solid on solid model 15±19,

in Ag/Si(001), Ag/Si(111)

self-assembly, self-organization

16±19, 253±256, 254, 255

and Ag/Ge(111) 93±95, 94

252±253, 291, 292

spin-polarized (electron)

in magnetic multilayers,

semiconductor(s) 24±28,

213±223

Fe/Ag/Fe(110) 179±181,

227±259, 260±280,

band structures 219±222,

180

289±299

220±221

sub-critical clusters 150±153

diamond-like carbon and

detectors and sources 216

sublimation energy, values

nanotubes 204±205, 205,

LEEM 216, 218

13±15, 13, 14, 120

293±294, 294

SEM (SEMPA) 216, 217,

substrate(s), diVusion and

group IV (C, Si, Ge, Sn) 32,

223, 223

growth on 144±181

50, 62(p), 227±232,

Spindt cathodes 204, 205, 294

diVusion into 179±181

235±252, 264, 277±280,

sputtering, see ion beam and

interactive versus inert

289±291

ion bombardment

135

hetero-structures and

step(s), at surfaces 6±7,

patterned 280, 295

devices 260±280,

174±180, 195±197, 200,

preparation of 49±50, 62(p),

297±299

243±249, 253±256

159, 323±325(a)

III±V compound (GaAs,

adatom capture at 17±19,

Rayleigh wave 127, 127

GaN etc.) 62(p), 230,

35(p), 163, 174±176,

rotation, for thin Wlm

232±235, 252±256,

182±183(p), 245±249, 246

uniformity 55±56, 55

265±266, 274±280

as adatom sources 176±179,

see also alkali halide,

wide band-gap, II±VI (ZnS,

178

Xuoride, graphite, mica,

etc.) and IV±VI 230, 235,

atomistic versus continuum

oxide, and noble,

252±253, 256, 291±293

models, 182±183(p),

refractory or transition

see also graphite,

255±256

metals

reconstructions,

decoration of, nucleation at

superconductivity 190,

semiconductor processing

174±176, 175, 177

224±225(p), 281

Index

 

371

 

 

 

supersaturation, Dm 15±19,

of Si and Ge(111) 235±239,

driving force for crystal

17±19, 34(p), 147±149,

244±245

growth 15±19, 34(p)

147, 149, 193

and tension 3±5, 9, 200,

equilibrium with vapor

surface analysis techniques

256

11±15, 34(p)

63±105, 306±308(a)

in TLK model 5±7, 34(p)

formulae and potentials 1±4,

classiWcation as scattering

values for metals 196±200,

314±317(a)

experiments 63±64

198

versus kinetic argument

diVraction conditions for

surface phonons 74±75,

9±19

scattering 70, 105±106(p)

105±106(p), 127±128, 127

techniques 64, 115±118,

sensitivity, via inelastic

see also vibrations

115±117, 125, 128

mean free path 64, 87±90,

surface preparation and

thin Wlm deposition 54±60, 55,

89, 93±94, 94, 104

cleaning 47±50, 62(p),

56, 58, 59

see also electron diVraction,

323±325(a)

by sputtering and ion-beams

electron spectroscopy,

surface segregation 179±181,

57±59

microscopy, X-ray

180, 251±252, 278±279

by thermal and electron

diVraction

surface stress, strain 4, 193,

beam evaporation 54±57,

surface diVusion 16±17, 139,

242±244, 249±252

55, 56, 61(p)

147, 167±181, 206±208,

surface structure, steps see

see also chemical vapor

243, 246±251

reconstructions, steps,

deposition, crystal

adatom hopping 16±17, 147,

vicinal surfaces

growth, epitaxial growth,

167±172

surface tension, see surface

molecular beam epitaxy

and current Xuctuations

energy

tight-binding method 190,

206±208, 208

surface thermodynamics 1±9,

230±231, 257±258(p),

eVect of strain 171,

314±317(a)

328±330(a)

178±179, 243

surface vacancies, pits 7,

transistors, high electron

exchange mechanism 168,

174±34, 175, 177±178,

mobility 280

171±172

183(p)

single electron 283±284

FIM studies 167±169, 168,

surfactants 153±154, 250

transition metals (Fe, Co, Ni,

171±172, 176

symmetry and symmetry

Cr etc.)

in Ostwald ripening

breaking 210±213, 300

(band) structures and

176±179, 183(p)

synchrotron radiation facilities

magnetism 218±222,

mass transfer 139, 176,

37±38, 51±53, 71, 78±81,

220±221, 226(p)

183(p)

313(w)

cohesive energies 190±192,

for Si and Ge/Si(001) 243,

for angular resolved UPS

192, 218±219

246±251

and XPS, 78±81, 78

small particle growth

see also interdiVusion

sample transfer device for

161±164, 162

surface electronic terms 30±33,

51±52, 53

spin-dependent scattering

31, 32

for surface X-ray diVraction

285±287, 286

surface (free) energy 1±9,

51±52, 53, 71

as substrates 118, 171±173,

145±149, 196±200,

and vacuum design 37±38,

179±181

235±245, 249

61(p), 313(w)

surface energies 219,

anisotropy, g-plots 5, 7±9, 8,

 

226(p)

10, 11, 198±200, 244±245

terrace±ledge±kink (TLK)

surface preparation 49±50,

entropy 4, 9, 200, 243±245,

model 5±7, 6, 7, 34(p)

62(p)

258±259(p)

thermal desorption

transmission high energy

experiment-theory

spectroscopy (TDS)

electron diVraction

comparison 198±200

127±128, 127

(THEED) 66, 72±75, 136,

in nucleation and growth

thermal-Weld emission (TFE)

292

models 145±149, 147,

206±207, 209

of adsorbed Kr and Xe/

149

thermionic emission 200±202,

graphite 120±121,

of Si and Ge(001) 239±243,

225(p), 261

125±126

249

thermodynamic

and Si(111) structure 236

372 Index

transmission electron

eVect on vapor pressure

at Si and Ge(001) surfaces

microscopy (TEM)

34±35(p)

239±242, 241, 258±259(p)

65±66

vacancy line defects 250, 252

techniques for measuring

of deposited metals

vacancy model of Si(001) 27

127±128, 134

135±137, 136, 157±159,

vacuum, kinetic theory of

see also Einstein model

158, 174±176, 175, 177

36±38, 39

vicinal surface, deWnition 7±9,

of nanometer scale devices

conductance and pumping

7, 8

287±294, 288, 292, 294

speed 39±42, 40, 41

semiconductor growth on

of semiconductor interfaces

gauges 46±47

245±256, 246, 251, 254,

250±251, 251, 265

see also ultra-high vacuum

255

 

valence band oVset 273±279

see also crystal growth, steps

ultra-high vacuum (UHV)

Van der Waals energy, force

at surfaces

36±54, 60±61(p), 313(w),

108, 160

Volmer±Weber growth mode

318±325(a)

Lennard±Jones potentials

146, 146

bakeout procedures 40,

for 23±25, 24, 114, 114

volumetric measurements

45±47, 48

vapor pressure 11±15,

115±118, 115±117, 126

and clean surface

34±35(p), 45±46, 55±56,

 

preparation 38, 47±50,

61(p), 156, 313(w),

Walton relation 151, 183(p)

323±325(a)

320±322(a)

Wentzel±Kramers±Brillouin

gas composition 46±47, 48,

eVects of vibrations and

approximation

52

vacancies 34±35(p)

225±226(p)

hardware and system design

and evaporation (Knudsen)

Wigner±Seitz sphere, radius rs

38, 42±45, 60±61(p),

sources 55±56, 61(p)

185±188, 188, 196±198,

318±319(a)

of materials for use in UHV

198, 224±225(p)

materials for use in, 45±46,

45±46, 313(w), 320±322(a)

work function 30±31, 95±97,

313(w), 320±322(a)

and nucleation models 156

185±188, 195±196,

molecular density and mean

quasi-harmonic model

209±210

free path 37±38, 39

11±13, 13

of adsorbates 95±97, 96±97,

and particle accelerators

values for selected elements

195±196, 196, 209±210

37±38, 61(p), 313(w)

13±15, 13, 14

deWnition 30, 31

and production processes

vibrations (of atoms,

in jellium model 185±188,

52±54

molecules, at surfaces,

188

pump types and

etc.)

measurement methods 193

performance, speed

adlayer±substrate coupling

and patch Welds 193±195,

43±45, 319(a)

127±128, 127

209

system pressure 39±40, 39,

anharmonic 22±25, 114,

and secondary electrons

42, 46±47, 48

125, 192, 239±242, 241,

95±97, 96±97, 209±210

transfer devices 51±52,

258±259(p)

and steps 195±197,

53

Debye model 128

196±197

uniaxial anisotropy 212±213

and desorption 16±17,

values 186, 188, 193±197

units and conversion factors

34(p), 128

WulV construction, theorem

309±311(a)

of Kr and Xe on graphite

7±9, 8

monolayer (ML) and arrival

and metals 120, 122±128,

 

time 38, 39

126, 127

X-ray, diVraction from surface

pressure 37

in oxygen chemisorption 134

30, 51±52, 53, 64, 71,

universality classes 211±212

partition functions for

105±106(p), 236

 

109±114, 142±143(p)

Xuorescence, total reXection

vacancies, eVect on diVusion

quasi-harmonic 11, 25, 114

(TXRF) 269

176, 183(p)

of Si and Ge 231

XY model 129, 211

Соседние файлы в предмете Химия