
- •Contents
- •Preface
- •1.1 Elementary thermodynamic ideas of surfaces
- •1.1.1 Thermodynamic potentials and the dividing surface
- •1.1.2 Surface tension and surface energy
- •1.1.3 Surface energy and surface stress
- •1.2 Surface energies and the Wulff theorem
- •1.2.1 General considerations
- •1.2.3 Wulff construction and the forms of small crystals
- •1.3 Thermodynamics versus kinetics
- •1.3.1 Thermodynamics of the vapor pressure
- •1.3.2 The kinetics of crystal growth
- •1.4 Introduction to surface and adsorbate reconstructions
- •1.4.1 Overview
- •1.4.2 General comments and notation
- •1.4.7 Polar semiconductors, such as GaAs(111)
- •1.5 Introduction to surface electronics
- •1.5.3 Surface states and related ideas
- •1.5.4 Surface Brillouin zone
- •1.5.5 Band bending, due to surface states
- •1.5.6 The image force
- •1.5.7 Screening
- •Further reading for chapter 1
- •Problems for chapter 1
- •2.1 Kinetic theory concepts
- •2.1.1 Arrival rate of atoms at a surface
- •2.1.2 The molecular density, n
- •2.2 Vacuum concepts
- •2.2.1 System volumes, leak rates and pumping speeds
- •2.2.2 The idea of conductance
- •2.2.3 Measurement of system pressure
- •2.3 UHV hardware: pumps, tubes, materials and pressure measurement
- •2.3.1 Introduction: sources of information
- •2.3.2 Types of pump
- •2.3.4 Choice of materials
- •2.3.5 Pressure measurement and gas composition
- •2.4.1 Cleaning and sample preparation
- •2.4.3 Sample transfer devices
- •2.4.4 From laboratory experiments to production processes
- •2.5.1 Historical descriptions and recent compilations
- •2.5.2 Thermal evaporation and the uniformity of deposits
- •2.5.3 Molecular beam epitaxy and related methods
- •2.5.4 Sputtering and ion beam assisted deposition
- •2.5.5 Chemical vapor deposition techniques
- •Further reading for chapter 2
- •Problems for chapter 2
- •3.1.1 Surface techniques as scattering experiments
- •3.1.2 Reasons for surface sensitivity
- •3.1.3 Microscopic examination of surfaces
- •3.1.4 Acronyms
- •3.2.1 LEED
- •3.2.2 RHEED and THEED
- •3.3 Inelastic scattering techniques: chemical and electronic state information
- •3.3.1 Electron spectroscopic techniques
- •3.3.2 Photoelectron spectroscopies: XPS and UPS
- •3.3.3 Auger electron spectroscopy: energies and atomic physics
- •3.3.4 AES, XPS and UPS in solids and at surfaces
- •3.4.2 Ratio techniques
- •3.5.1 Scanning electron and Auger microscopy
- •3.5.3 Towards the highest spatial resolution: (a) SEM/STEM
- •Further reading for chapter 3
- •Problems, talks and projects for chapter 3
- •4.2 Statistical physics of adsorption at low coverage
- •4.2.1 General points
- •4.2.2 Localized adsorption: the Langmuir adsorption isotherm
- •4.2.4 Interactions and vibrations in higher density adsorbates
- •4.3 Phase diagrams and phase transitions
- •4.3.1 Adsorption in equilibrium with the gas phase
- •4.3.2 Adsorption out of equilibrium with the gas phase
- •4.4 Physisorption: interatomic forces and lattice dynamical models
- •4.4.1 Thermodynamic information from single surface techniques
- •4.4.2 The crystallography of monolayer solids
- •4.4.3 Melting in two dimensions
- •4.4.4 Construction and understanding of phase diagrams
- •4.5 Chemisorption: quantum mechanical models and chemical practice
- •4.5.1 Phases and phase transitions of the lattice gas
- •4.5.4 Chemisorption and catalysis: macroeconomics, macromolecules and microscopy
- •Further reading for chapter 4
- •Problems and projects for chapter 4
- •5.1 Introduction: growth modes and nucleation barriers
- •5.1.1 Why are we studying epitaxial growth?
- •5.1.3 Growth modes and adsorption isotherms
- •5.1.4 Nucleation barriers in classical and atomistic models
- •5.2 Atomistic models and rate equations
- •5.2.1 Rate equations, controlling energies, and simulations
- •5.2.2 Elements of rate equation models
- •5.2.3 Regimes of condensation
- •5.2.4 General equations for the maximum cluster density
- •5.2.5 Comments on individual treatments
- •5.3 Metal nucleation and growth on insulating substrates
- •5.3.1 Microscopy of island growth: metals on alkali halides
- •5.3.2 Metals on insulators: checks and complications
- •5.4 Metal deposition studied by UHV microscopies
- •5.4.2 FIM studies of surface diffusion on metals
- •5.4.3 Energies from STM and other techniques
- •5.5 Steps, ripening and interdiffusion
- •5.5.2 Steps as sources: diffusion and Ostwald ripening
- •5.5.3 Interdiffusion in magnetic multilayers
- •Further reading for chapter 5
- •Problems and projects for chapter 5
- •6.1 The electron gas: work function, surface structure and energy
- •6.1.1 Free electron models and density functionals
- •6.1.2 Beyond free electrons: work function, surface structure and energy
- •6.1.3 Values of the work function
- •6.1.4 Values of the surface energy
- •6.2 Electron emission processes
- •6.2.1 Thermionic emission
- •6.2.4 Secondary electron emission
- •6.3.1 Symmetry, symmetry breaking and phase transitions
- •6.3.3 Magnetic surface techniques
- •6.3.4 Theories and applications of surface magnetism
- •Further reading for chapter 6
- •Problems and projects for chapter 6
- •7.1.1 Bonding in diamond, graphite, Si, Ge, GaAs, etc.
- •7.1.2 Simple concepts versus detailed computations
- •7.2 Case studies of reconstructed semiconductor surfaces
- •7.2.2 GaAs(111), a polar surface
- •7.2.3 Si and Ge(111): why are they so different?
- •7.2.4 Si, Ge and GaAs(001), steps and growth
- •7.3.1 Thermodynamic and elasticity studies of surfaces
- •7.3.2 Growth on Si(001)
- •7.3.3 Strained layer epitaxy: Ge/Si(001) and Si/Ge(001)
- •7.3.4 Growth of compound semiconductors
- •Further reading for chapter 7
- •Problems and projects for chapter 7
- •8.1 Metals and oxides in contact with semiconductors
- •8.1.1 Band bending and rectifying contacts at semiconductor surfaces
- •8.1.2 Simple models of the depletion region
- •8.1.3 Techniques for analyzing semiconductor interfaces
- •8.2 Semiconductor heterojunctions and devices
- •8.2.1 Origins of Schottky barrier heights
- •8.2.2 Semiconductor heterostructures and band offsets
- •8.3.1 Conductivity, resistivity and the relaxation time
- •8.3.2 Scattering at surfaces and interfaces in nanostructures
- •8.3.3 Spin dependent scattering and magnetic multilayer devices
- •8.4 Chemical routes to manufacturing
- •8.4.4 Combinatorial materials development and analysis
- •Further reading for chapter 8
- •9.1 Electromigration and other degradation effects in nanostructures
- •9.2 What do the various disciplines bring to the table?
- •9.3 What has been left out: future sources of information
- •References
- •Index
Index
Note: Page numbers for text references are in upright type, whereas page numbers for Wgures are in sloping type. Problems and projects are indicated (p), appendices are indicated (a), with Appendix D indicated (w) for web. Not all techniques and acronyms are indexed; see Appendix B for a guide.
acronyms 64, 69±70, |
models of 185±191, 187, |
peak height, peak to |
306±308(a) |
188, 191, 224±225(p) |
background ratio 88±91, |
ad-atoms |
surface energy values |
90±91 |
and ad-dimers on Si and Ge |
196±200, 198 |
quantiWcation of 88±95, |
235±242, 240, 241, |
work function values 186, |
89±91, 94 |
245±249, 246, 248, |
188, 193±196 |
ratio techniques for 92±104, |
258±259(p) |
alkali halide substrates |
94, 97, 99 |
in TLK model 7, 34(p) |
157±161, 158, 174±176, |
and sample cleaning 50, 80 |
see also adsorption, |
175 |
standards and consulting |
nucleation and growth, |
Anderson±Grimley±Newns |
organizations 92, |
surface diVusion |
model 130±132, 131, |
312±313(w) |
ad-layer structures 19±22, 28, |
143(p) |
signal to noise ratio (SNR) |
21, 23, 29, 120±125, 121, |
anharmonicity, see vibrations, |
in 95, 98, 100±104, 102, |
123, 128±134, 130, |
anharmonic |
103, 106±107(p) |
141±142(p) |
Askin±Teller model 129 |
see also scanning Auger |
adsorption 108±143, 146±147, |
atomic force microscopy |
microscopy |
206±210 |
(AFM) 67±70, 68±69, |
|
at low coverage 109±113, |
105 |
bakeout procedures 40, 45±47, |
111 |
Auger electron spectroscopy |
48 |
chemisorption versus |
(AES) 50, 63±64, 76±104 |
ballistic electron emission |
physisorption 108±109 |
of adsorbed layers 118±119, |
microscopy (BEEM) and |
versus crystal growth |
119, 137±139, 138 |
spectroscopy 266±268, |
118±119, 146±147, 146, |
analyzers and spectra 76±79, |
267±269 |
147 |
76±79, 81±87, 84, 86±87, |
bamboo structures 297 |
and electron emission |
99±104, 99±101 |
band alignment and oVsets |
206±210, 206, 208±209 |
backscattered electrons, |
272±279, 273±275 |
equilibrium conditions for |
backscattering factor 76, |
band bending 32, 32, 209, |
114±118 |
88±92, 90, 97±99, 97 |
260±265, 261, 264 |
Henry law 110±113 |
eYciency and X-ray |
band-gap engineering |
Langmuir isotherm |
Xuorescence yield 82±84, |
274±280, 291 |
109±110, 111 |
85 |
band structure calculations |
at steps 128 |
energies and atomic physics |
190±193, 219±222, |
virial expansions 113±114 |
81±84, 82±84 |
227±232, 326±330(a) |
see also ad-atoms, ad-layer, |
energy shifts and lineshapes |
spin-polarized 219±222, 220, |
chemisorption, |
84±87, 86, 87 |
221 |
desorption, physisorption |
growth mode analysis |
tight-binding 230±232, |
alkali and s-p bonded metal |
92±95, 94, 179±181, 180 |
257±258(p), 328±330(a) |
(adatoms, clusters, |
L±S versus j±j coupling 82, |
Bessel functions 152, 182(p), |
surfaces, etc.) |
83 |
190, 225(p) |
adsorption of 195±196, |
inelastic mean free path |
bonding and bond angles |
206±210, 206 |
87±90, 89, 93±94, 94, |
due to d-bands 191±193, |
clusters 186±188, 187 |
104 |
192, 218±222, 226(p) |
363

364 Index
bonding and bond angles |
oxidation reactions 133±134, |
versus adsorption 118±119, |
(cont.) |
137±141, 138, 140 |
145±147, 146, 147 |
in metals 190±3, 196±200, |
and painters 134 |
and dislocations 15, 17, 18, |
218±222 |
precursor stage of 108 |
19, 147, 246±251, 251, |
in semiconductors 227±242 |
cleave, cleavage 3, 49, 236 |
268±269, 269 |
and s-p hybridization |
cluster density, size see |
from the liquid 17±18 |
227±229, 257±258(p), |
nucleation and growth |
repeatable step in 6 |
328±330(a) |
coalescence 151±152, 153, 154, |
of semiconductors 245±256, |
bond counting 5±15 |
157, 158, 179 |
246, 251, 254, 255 |
in crystals 8±9, 10, 33±34(p) |
cohesion, cohesive energy, |
at steps, and the |
in nucleation models 145, |
function see bonding, |
condensation coeYcient |
155±156 |
sublimation energy |
35(p), 174±179, 175, 177, |
in polar semiconductors |
compressibility, isothermal |
181±182(p) |
235, 258(p) |
115±116, 117 |
supersaturation for 15±19, |
in TLK model 5±7, 6, 7, |
computer codes and |
17, 18, 19, 34(p), 247±252 |
33±34(p) |
simulations 150, 156±157, |
see also chemical vapor |
bond orientational order |
193, 236, 313(w), |
deposition, epitaxial |
124±125 |
327±328(a) |
growth, molecular beam |
boron nitride, pyrolytic 56 |
see also eVective medium |
epitaxy, nucleation and |
Brillouin zone 31±32, 31, 232 |
theory, molecular |
growth, thin Wlm |
|
dynamics, Monte Carlo |
deposition procedures |
capture numbers 151±155, 155, |
condensation |
crystallographic notation 8±9, |
182(p) |
coeYcient, 181±182(p) |
312±313(w) |
catalysis 52±54, 128, 135±141 |
regimes 152±155, 155 |
cubic anisotropy 212 |
on d-band metals 143(p) |
conductance, conductivity |
|
industry 52±54, 135 |
of semiconductors 280±281, |
delta-doped layers 265±266, |
small metal particle (SMP) |
283±284 |
266, 278 |
52±54, 135±137, 136, |
of thin (metal) Wlms |
demagnetizing energy, Weld |
137 |
280±287 |
212 |
spatio-temporal reactions |
of vacuum pipes 41±42, 41, |
density functional theory |
139±141, 140 |
44±45, 318(a) |
(DFT) 184±199, 275, |
see also chemisorption |
conWgurational entropy 34(p), |
326±327(a) |
cell model, for adsorbed layers |
109±110, 130, 258±259(a) |
of chemisorption 133, 170 |
113±114, 126, 126 |
conversion factors 309±311(a) |
eVective medium theory |
quantum 114, 114, 126 |
Coulomb blockade 284, 293 |
(EMT) 133±134, 165±166, |
chemical synthesis and |
critical cluster, or nucleus, size |
170±171, 191±193, 192 |
materials development |
148±157, 155 |
embedded atom methods |
289±295 |
critical phenomena, points and |
(EAM) 133, 191 |
chemical vapor deposition |
exponents 115, 129±130, |
jellium model 184±190, 185, |
(CVD) 52, 59±60, |
211±212 |
187±188, 195±196, 198, |
252±256, 289±291, 300 |
crystal surfaces and interfaces, |
224±225(p) |
and gas purity 52, 59 |
introduction 5±17 |
local density approximation |
modeling of, 252±256, 300 |
melting transition 15 |
(LDA) 186, 231, |
and precursor molecules |
rough surfaces, roughening |
326±327(a) |
289±291, 290 |
transition 7, 15, 16, 17 |
denuded zones, at steps 163, |
thin Wlm production |
simple models of 5±9, 6, 7 |
174±176, 177, 182±183(p), |
methods 59±60, 59 |
singular, smooth 7±9,17 |
246, 247±248 |
chemisorption 108±109, 114, |
see also reconstruction, solid |
depletion layer or region 260, |
118, 128±141 |
on solid model, vicinal |
263±265, 265 |
and catalysis 135±141 |
surface |
desorption, and adsorption 16, |
on d-band metals 143(p) |
crystal growth (kinetics) |
34±35(p), 118±119 |
Newns±Anderson model |
15±19, 54±60, 144±181, |
and bakeout procedures |
130±132, 131, 143(p) |
245±256 |
40 |
Index |
|
365 |
|
|
|
and catalytic reactions |
stripe 22, 122 |
electron emission 76±104, |
135±141, 137 |
walls 22, 23, 122±125 |
200±210, 261±263 |
spectroscopy, thermal (TDS) |
|
adsorption eVects on |
127±128, 127 |
eVective medium theory |
206±210, 206, 208±209 |
diamond-like carbon (DLC) |
(EMT) 133±134, 165, |
cold Weld (CFE) 202±206, |
cathodes 204, 205, 294 |
170±171, 191±193, 192, |
203, 204±205, 225±226(p) |
diVusion, in alloys 183(p) |
200 |
Xuctuations and diVusion |
bulk versus surface 251 |
eVusion sources 56±58, 56, 58 |
206±208, 208 |
chemical, or mass transport |
Ehrlich±Schwoebel barrier |
secondary 76, 76, 95±97, 96, |
139, 176±177, 183(p) |
176±178, 177, 182±183(p), |
97, 207±210 |
intrinsic 16, 183(p) |
253 |
thermal 200±202, 225(p), |
see also interdiVusion, |
Einstein model (of vibrations) |
261±262, 261±263 |
surface diVusion |
13±15, 110±113, 120, |
thermal Weld (TFE) |
dimer-adatom-stacking fault |
126±127, 156 |
206±207, 209 |
(DAS) model 28±29, |
in adsorbed layers 110±113, |
see also electron |
235±239, 237, 238, 240 |
111, 120, 126±127 |
spectroscopy |
dimer(s), and adatoms on Si |
in nucleation models 156 |
electron energy loss |
245±249, 248, 259(p) |
in vapor pressure 13±15, 13, |
spectroscopy (EELS) 76, |
asymmetric 25, 239±242, |
34±35(p) |
77, 203, 204 |
241 |
electromigration 297±299 |
high resolution (HREELS) |
and dimer rows on Si(001) |
electron aYnity and ionization |
134, 105±106(p) |
25±27, 26, 27, 239±242, |
potential 30±31, 31 |
electron gas, charge density |
241, 246 |
negative electron aYnity |
waves in 190, 224±225(p) |
rotation and migration of |
(NEA) 32, 216 |
density (Friedel) oscillations |
246, 247±249 |
electron beam evaporation |
in 185, 186±190, 187, 189, |
Si2 and Ge2 231 |
56 |
224±225(p), 263, 327(a) |
vacancy row structures 250, |
electron beam lithography |
exchange-correlation energy |
252 |
95 |
185±186, 195, 326±327(a) |
dipole layers in |
electron beam sample heating |
free electron models |
semiconductors 260, |
49 |
184±190, 189 |
272±273, 273, 279 |
electron density see electron |
and ionic lattice 190±193, |
dipole moment, layer, |
gas |
191, 192 |
deWnitions 195±196 |
electron diVraction 20±30, |
jellium model 184±190, 185, |
Xuctuating 108 |
63±76, 120±125, 243±246, |
187±188, 195±196, 198, |
and work function 195±197, |
253±255 |
224±225(p) |
196±197 |
and defects, domains 75, |
see also density functional |
diodes, forward and reverse |
122±125, 123, 243±245, |
theory |
bias 260±263, 261±263 |
244 |
electron holography 75, |
disciplines, role of 299±301 |
dynamical theory of 66, 71, |
212±213 |
disclinations 125 |
75, 105±106(p) |
electron microscopy 65±66, |
dislocations, and electrical |
inelastic scattering in, |
95±104, 139±141, |
activity 268, 269 |
74±77, 106(p) |
157±159, 165±167, |
misWt 122±125, 147, 171, |
LEED and SPA-LEED |
212±224, 250±251, |
246±251, 251, 268±269, |
20±28, 63±64, 70±76, 71, |
287±294 |
269 |
106(p), 120±125, 123, |
low energy (LEEM) 66, |
screw 15, 17, 19 |
243±245, 244 |
165±167, 218, 245, 247 |
threading 125 |
reXection high energy |
in magnetism 212±218, |
domain(s), and LEED |
(RHEED) 66, 70±75, 72, |
214±215, 217±218, |
patterns 120±122, 123, |
72±75, 237, 246, 253±255, |
223±224, 223 |
243±244, 244 |
254, 255 |
photo- (PEEM) 66, |
eVect of strain 243±244, 244 |
transmission high energy |
139±141, 140 |
on Si(001) 22, 24±27, 26, |
(THEED) 66, 72±75, |
reXection (REM) 65±66, |
243±244, 244 |
120±126, 235±236 |
65 |

366 Index
electron microscopy (cont.) |
on Si and Ge(001) 242, |
giant magneto-resistance |
transmission (TEM) 65±66, |
245±252, 246, 251 |
(GMR) 179, 224, |
65, 135±137, 136, |
three modes of 145±147, |
284±288, 286 |
157±159, 158, 265, |
146, 147 |
Gibbs' dividing surface 1±2, 2 |
287±294 |
see also chemical vapor |
graphite 23, 56, 115±127, |
scanning transmission |
deposition, crystal |
141±142(p), 227±229 |
(STEM) 65, 66, 100±104, |
growth, molecular beam |
growth modes 92±95, 145±147, |
100, 103, 250±251, 251 |
epitaxy, thin Wlm |
146, 179±181 |
see also ballistic electron |
deposition procedures |
AES analysis of 92±95, 94, |
emission microscopy, |
epitaxy, deWnition 144 |
179±181, 180 |
scanning Auger |
strained layer 249±252 |
see also epitaxial growth, |
microscopy, scanning |
equilibrium form, shape see |
nucleation and growth |
electron microscopy |
surface energy |
|
electron sources 200±207, 216 |
exchange-correlation energy, |
helium atom scattering (HAS) |
brightness of 201±202 |
hole 185±186, 195, 219, |
105±106(p), 127±128, 127 |
LaB6 202, 207, 209 |
326±327(a) |
Heisenberg Hamiltonian 211 |
Spindt and DLC cathodes |
|
Henry law adsorption 110±112 |
204±205, 205 |
faceting 8, 200, 245 |
hexatic phase 124±125 |
spin-polarized 216 |
Fermi±Dirac energy |
Hubbard models 87, 131 |
W-Wlament 201 |
distribution 186, 203, |
hybridization (s-p) 227±229, |
W(310) and (111) tips 203, |
225±226(p), 281 |
257±258(p), 328±330(a) |
204, 206 |
Fermi sphere, surface 188±189, |
|
Zr/O coated W(001) 207 |
189, 225(p) |
in situ experiments 50±51, |
electron spectroscopy 76±104 |
ferroand antiferro-magnetism |
165±181 |
analyzers for 76±81, 78 |
210±224 |
in situ growth results 161±181 |
for chemical analysis |
Weld emission 202±207 |
in situ transfer devices 51±52, |
(ESCA) 76 |
cold (CFE) 202±206, 203, |
53 |
and magnetic domains |
204±205, 225±226(p) |
interdiVusion 147, 179±181, |
215±216 |
microscopy (FEM) 206±207, |
180, 183(p) |
see also Auger electron |
206, 208 |
integrated circuit (IC) 298, 301 |
spectroscopy, electron |
spectroscopy (FES) 203, |
metal interconnects in |
energy loss spectroscopy, |
204, 207, 209 |
297±299 |
photoelectron |
see also electron sources |
ion beam assisted deposition |
spectroscopy |
Weld ion microscopy (FIM) 66, |
(IBAD) 58 |
electron spin resonance (ESR) |
167±169, 168, 171±172, |
ion beam sputtering and |
268±269, 270 |
176, 203 |
sputter deposition 57±59 |
ellipsometry 140 |
Xuoride substrates 160±164, |
ion beam surface techniques |
embedded atom methods |
162 |
64 |
(EAM) 133, 191 |
Fowler±Nordheim equation, |
ion bombardment (sputter) |
epitaxial growth 54, 57±60, |
plot 202±203, 225±226(p) |
cleaning 50, 53, 57 |
144±181, 242, 245±256 |
Frank±van der Merwe growth |
Ising model 128±129, 210±211 |
and adsorption 146±147, |
mode 145±146, 146 |
isobar, isostere, isotherm |
146, 147 |
Friedel oscillations 132, 185, |
116±118, 126 |
of compound |
186±190, 187, 189, |
isosteric heat of adsorption |
semiconductors 252±256, |
224±225(p), 263, 327(a) |
117±118, 316±317(a) |
254, 255 |
|
isothermal compressibility |
and device production 54, |
gallium arsenide, nitride, see |
115±116, 117 |
57±60, 58, 59, 144±145, |
semiconductors (III±V) |
|
246, 250, 256 |
germanium, see dimer, |
jellium model 184±190, 185, |
multilayer, rough 254, 256 |
reconstruction, |
187±188, 195±196, 198, |
rate equation models of |
semiconductor, substrate, |
224±225(p) |
149±157, 153, 155, 156 |
surface energy |
journalists, role of 298±299 |
Index |
|
367 |
|
|
|
Kerr eVects 213±215, 214±215, |
low energy electron |
Mermin±Wagner theorem |
287 |
microscopy (LEEM) 66, |
210±211 |
kinetic Monte Carlo (KMC) |
165±167, 245 |
metal(s) 9±12, 15, 22±23, |
simulation 150, 156±157, |
and ad-dimers on Si(001) |
135±137, 184±224 |
156, 253±256, 254, 255 |
247, 248 |
d- and f-band 190±193, 192, |
kinetic theory, in relation to |
spin polarized (SPLEEM) |
218±222, 220±222 |
vacuum 36±39, 39 |
216, 218 |
electronic structure models |
Knudsen evaporation source |
|
184±200 |
53, 56, 61(p) |
magnetic circular dichroism |
small metal particle |
Knudsen Xow regime and |
(MCD) 214±215 |
(catalysts) 135±137, 136 |
number 42 |
magnetic force microscopy |
s-p bonded 188, 190±200, |
Kossel crystal 6±9, 7, 14, 16, |
(MFM) 213, 216±218 |
198 |
34(p) |
magnetic multilayer devices |
sublimation energies 15 |
Kosterlitz±Thouless |
144, 179±181, 222±224, |
surface energies 9, 11±12, |
dislocations 125 |
284±289 |
196±200, 198 |
|
coupling in 222±224, 223 |
surface structures 22±23, |
Langmuir adsorption isotherm |
interdiVusion in 179±181, |
192±193 |
109±110, 111 |
180 |
work function of 188, |
lattice gas models 128±130, |
spin-dependent scattering in |
193±196, 197 |
130 |
284±287 |
see also alkali, noble, |
ledges and kinks, in TLK |
magnetic surface techniques |
transition, refractory |
model 6±7, 6, 7 |
213±218, 214±215, 217, |
(metals), nucleation and |
LEED, see low energy electron |
218 |
growth |
diVraction |
magneto-crystalline anisotropy |
metal-induced gap states |
Lennard±Jones cell model |
212 |
(MIGS) 271±273, 274, |
113±114, 114, 126, |
magneto-elastic anisotropy, |
278±279 |
126 |
magnetostriction |
metal±oxide±semiconductor |
Lennard±Jones potentials |
212±213 |
(MOS and CMOS) |
23±25, 24, 114, 114 |
magneto-optic Kerr eVects |
devices 260, 268, 298±299 |
Lindhard screening 188, 263 |
(MOKE and SMOKE) |
metal±semiconductor |
local density approximation |
213±215, 214±215, 287 |
interactions 260±263, |
(LDA) see density |
magneto-resistance, giant |
267±274, 298±299 |
functional theory |
(GMR) 179, 224, |
Ag or Au/Si or Ge(111) 28, |
local spin density (LSD) |
284±287, 286 |
29, 72, 74, 298 |
approximation 219±222, |
magnons 210±211 |
Ag/Si(001) 93±95, 94, |
220±221 |
mass spectrometry, and gas |
101±102 |
Lorentz microscopy 212±213 |
composition 47, 48, 62(p) |
Al±Si±(SiO2) 262, 263, 298 |
low energy electron diVraction |
mean free path, inelastic (imfp) |
CoSi2±Si 267±269, 268, 269 |
(LEED) 20±30, 63±66, |
64, 87±90, 89, 93±94, 94, |
Cu±Si 299 |
70±76 |
104 |
mica substrate 137, 161, |
of adsorbed layers 119±123, |
mean free path versus |
282±283, 283 |
123, 130 |
attenuation length 93, 104 |
microscopy techniques 65±69, |
of domains 122, 123, |
mean free path for molecular |
65, 68±69 |
243±245, 244 |
collisions 37±38, 39 |
see also electron microscopy, |
geometry and |
melting of adsorbed layers |
scanned probe |
instrumentation 53, |
115±117, 115, 116, |
microscopy, scanning |
70±71, 71, 106(p) |
124±125 |
Auger microscopy, |
I±V analysis 71, 106(p), 232, |
melting of aligned hexatic |
scanning electron |
236 |
phase 124±125 |
microscopy |
spot proWle analysis (SPA- |
melting transition, at crystal |
MIDAS project 100±104, |
LEED) 70, 75, 165, 172, |
surfaces 15, 139, |
100±103, 214±215, |
246 |
258±259(p) |
214±215 |

368 Index
misWt dislocations 122, 171, |
growth mode analysis |
phases and phase transitions, |
249±251, 251, 268, 269 |
92±95, 94, 179±181, 180 |
diagrams 20±22, 114±130, |
molecular beam epitaxy |
metals on insulators |
210±213 |
(MBE) 57±58, 252±256 |
157±164, 158, 162 |
commensurate/ |
of compound |
metals on metals 165±174, |
incommensurate 20±22, |
semiconductors 252±256, |
166±168, 170, 172±173 |
21, 23, 120±124, 121, |
254, 255 |
on semiconductors 245±256, |
123 |
and thin Wlm deposition 53, |
246, 251, 254 |
hexatic 124±125 |
57, 58, 62(p) |
nucleation and growth models |
of Kr and Xe on graphite |
molecular dynamics (MD) 25, |
145±157, 161±164, |
22, 23, 115±127, 115±117, |
133±134, 239±242, 241 |
246±249, 252±255 |
119, 121, 126, 141±143(p) |
monolayer (ML), deWnitions |
atomistic 145, 147, 149±157, |
of Kr and Xe on metals 122, |
and units 38, 39, 112 |
153, 155±156 |
127±128, 127 |
Monte Carlo (MC) simulation |
capture numbers in 151±155, |
lattice gas models 128±130, |
of adsorption 114, 125, 129 |
155, 182(p) |
130 |
of electron scattering in |
classical 145±149, 147, |
in monolayer adsorbates |
solids 3.28 |
149 |
119±128, 119, 121, 123, |
kinetic (KMC) of epitaxial |
cluster density formulae |
126, 196 |
growth 150, 156±157, 156, |
150±157 |
of Ne and Ar on graphite |
253±256, 254, 255 |
cluster growth rate |
122, 123, 124, 126 |
of solid on solid model |
181±182(p) |
and symmetry breaking |
14±19, 16±19, 253±256, |
cluster size distributions |
210±213 |
254, 255 |
150±152, 156±157, 156 |
phosphors 295 |
multilayer growth models 254, |
including defects 161±164, |
photoemission 76±81, 84±87, |
255±256 |
163, 164 |
86 |
multiply twinned particles 137 |
nucleation rate 150±152, |
circularly polarized |
|
157 |
214±215 |
nanotubes 293±294, 294 |
for reconstructed |
photoelectron spectroscopy |
Newns±Anderson model |
semiconductors 246±249, |
76±81, 84±87, 86 |
130±132, 131, 143(p) |
252±255 |
angular resolved (AR)UPS |
noble metals (Cu, Ag, Au, Pd, |
nucleation density, rate see |
76±81 |
Pt, etc.) |
nucleation and growth |
energy shifts and lineshapes |
adsorption on 118, 127±128, |
|
84±87, 86, 105±106(p) |
127, 133±141, 140 |
opto-electronic devices |
ultraviolet (UPS) and X-ray |
as catalysts 52±54, 135±137, |
274±280, 291±293 |
(XPS) 76, 79±80 |
139±141, 140 |
Ostwald ripening 176±179, |
see also synchrotron |
oxide structures on 20, 21, |
183(p) |
radiation |
104, 133±134, 137±141, |
oxide substrates 135±137, |
photoluminescence 275, 293 |
140 |
161±164 |
physisorption 108±128 |
resistivity of 282±283, 283 |
oxide surface structures 30, |
of rare gases on graphite |
as substrates 118, 170, 172, |
164 |
109±127, 141±143(p) |
176, 179±181, 188±189, |
oxygen chemisorption 20, 21, |
see also phases and phase |
189 |
133±135, 137±141, 138, |
transitions |
surface energy and stress |
140 |
plasmon, bulk and surface, |
196±200, 243 |
|
deWnition 31 |
surface structure 22±23, |
particle accelerators, vacuum |
plasmon loss processes 74±76, |
192±193, 198 |
design 37±38, 61(p), |
88 |
work function 193±194, 197 |
313(w) |
point defects, interfacial 265, |
nucleation and growth |
passivation by oxides 134 |
268±269, 269 |
experiments 92±95, |
patch Welds 193±195, 209 |
see also vacancies |
157±174, 179±181, |
pattern formation 171, 253, |
Potts models 28, 129 |
245±256 |
254, 295 |
pressure gauge types 46±47 |
Index |
|
369 |
|
|
|
pressure measurement, total |
diVuse scattering from |
of complex (real world) |
and partial 39±42, 46±47, |
adatoms 237 |
samples 98±99, 99 |
48 |
geometry and patterns |
at high resolution 100±104, |
pressure units and conversion |
72±74, 72±74, 250 |
100±103 |
factors 37, 39, 310(a) |
growth and intensity |
ratio techniques for 92±102, |
pseudopotentials, metals 184, |
oscillations 57±58, 246, |
97, 99 |
190±194, 191, 195±199, |
253±255, 254, 255 |
SNR problems 66, 95, |
198 |
as in situ diagnostic tool 53, |
100±104, 106±107(p) |
pseudopotentials, |
57±58, 58, 253±255, 255 |
scanning electron microscopy |
semiconductors 230±232, |
refractory metals (Nb, Mo, W, |
(SEM) 65, 66, 76, |
329±330(a) |
etc.) |
95±104 |
pump-down equation 39±40, |
adsorption and diVusion on |
analytical versus image |
40 |
165±169, 168, 196, |
resolution 100±104, 103 |
pumps and pumping 43±45, |
205±210, 206, 208 |
in situ growth 158, 159, |
318±319(a) |
as electron sources 201, 203, |
165±167, 166, 167, |
|
204 |
179±181, 180, 250±251, |
quadrupole mass spectrometry |
metal layers on 95±97, 96, |
251 |
(QMS) 47, 48, 62(p) |
97, 165±169, 166, 216, 218 |
with polarization analysis |
quantum, cell model 114, 114, |
surface energy 199 |
(SEMPA) 216, 217, 223, |
126 |
surface preparation 49±50 |
223 |
conduction 280, 301 |
for thermal evaporation 54 |
in transmission (STEM) 65, |
corrals 188±189, 189, 313(w) |
work function 193±196, |
66, 100±104, 100, 103, |
dots and wires 250, 279±280 |
197 |
250±251, 251 |
size eVect 222±223 |
residual gas analysis 46±48 |
in UHV, surface sensitivity |
well lasers 274±275, 276, |
partial pressure, gas |
95±98, 96±97, 166, |
278 |
composition |
250±251, 251 |
|
measurement 46±47 |
see also secondary electron |
Raman scattering 276 |
QMS instrument and |
scanning tunneling microscopy |
reconstructions (of surfaces |
spectra 47, 48 |
(STM) 67, 68, 104±105, |
and adsorbates) 19±30, |
resistance, resistivity, of thin |
313(w) |
120±124, 192±193, |
Wlm devices 280±287 |
in situ nucleation and |
227±242, 313(w) |
RHEED, see reXection high |
growth 169±174, 170, 172, |
of adsorbates 20±22, 21, 23, |
energy electron diVraction |
173, 177±179 |
120±124 |
Richardson±Dushman |
models of operation |
of ionic crystals 30 |
equation 200±201, 225, |
225±226(p) |
of metals 22±23, 192±193 |
261 |
of quantum corrals |
of polar semiconductors 28, |
roughening transition 15, 16, |
188±189, 189, 313(w) |
234±235, 235, 258(p) |
258±259(p) |
of GaAs 233±234, 234, 253, |
`root-three' 22, 23, 28, 29, |
|
254, 313(w) |
120±124, 141±142(p) |
sample preparation 47±51, |
of Si and Ge(001) 243±249, |
of Si and Ge(001) 24±27, 26, |
62(p), 324±325(a) |
246, 250, 313(w) |
27, 227, 239±242, 241, |
see also surface preparation, |
of Si and Ge(111) 235±238, |
257±258(p) |
in situ experiments |
240, 245, 313(w) |
of Si and Ge(111) 27±28, |
sample transfer devices 51±52, |
scanning tunneling |
62(p), 235±239, 237, 238, |
53 |
spectroscopy (STS) |
313(w) |
scanned probe microscopy |
104±105, 233 |
Wood's notation for 20, 21 |
67±69, 68±69, 104±105 |
scattering of conduction |
see also phases and phase |
see also atomic force |
electrons 281±284, 283 |
transitions |
microscopy, scanning |
spin-dependent, or spin-Xip |
reXection high energy electron |
tunneling microscopy |
284±287 |
diVraction (RHEED) |
scanning Auger microscopy |
scattering experiments, |
57±58, 66, 70±75 |
(SAM) 95±104 |
classiWcation 63±64 |

370 Index
Schottky barrier (height) |
semiconductor processing 52, |
denuded zones at 163, |
261±274 |
57±60, 144, 245±256, 260, |
174±176, 177, 182±183(p), |
Bardeen and Schottky |
268, 297±299 |
246, 247±248 |
models 270±271, 273 |
and epitaxial growth 57±60, |
dipole moment of 195±197, |
linear response and MIGS |
62(p), 144, 245±256, 246, |
196±197 |
models 271±273, 272±274, |
251, 254, 255 |
Ehrlich±Schwoebel barriers |
279 |
and equipment (IC) failures |
at 176±178, 177, |
model solid approach 274, |
52, 297±299 |
182±183(p), 253 |
279 |
MOS and CMOS devices |
energy, entropy and stiVness |
science and technology, |
260, 268, 298±299 |
5±8, 200, 243±249, |
relation between 52±54, |
see also chemical vapor |
258±259(p) |
144±145, 164 |
deposition, molecular |
Xow and mound formation |
role of disciplines 299±301 |
beam epitaxy |
253±256, 254 |
screening, and image force |
sensors 135, 301±302 |
Xuctuations, movement of |
32±33, 33 |
serial and parallel processing |
179±180, 200 |
Lindhard 188, 263 |
66, 301 |
gas adsorption at 128 |
Thomas±Fermi 263±264 |
signal to noise ratio (SNR) 66, |
on metals 195±197, 200 |
secondary electron, emission, |
95, 100±104, 106±107(p) |
on semiconductors 243±249, |
production 76, 95, |
silicon, see dimer, |
253±256, 258±259(p) |
207±210 |
reconstruction, |
TLK model 6, 6, 7, 34(p) |
imaging (biased-SEI) 95±97, |
semiconductor, substrate, |
stereogram 9, 10, 313(w) |
96±97, 104, 176, 209±210 |
surface energy |
Stranski±Krastanov (SK) |
secondary ion mass |
simulation, see computer |
growth mode, deWnition |
spectrometry (SIMS) 64, |
codes and simulations |
146, 146 |
265, 266 |
single electron transistor 284, |
in Ag/Mo(001) and W(110) |
segregation, see surface |
293 |
165±167, 166, 167 |
segregation |
solid on solid model 15±19, |
in Ag/Si(001), Ag/Si(111) |
self-assembly, self-organization |
16±19, 253±256, 254, 255 |
and Ag/Ge(111) 93±95, 94 |
252±253, 291, 292 |
spin-polarized (electron) |
in magnetic multilayers, |
semiconductor(s) 24±28, |
213±223 |
Fe/Ag/Fe(110) 179±181, |
227±259, 260±280, |
band structures 219±222, |
180 |
289±299 |
220±221 |
sub-critical clusters 150±153 |
diamond-like carbon and |
detectors and sources 216 |
sublimation energy, values |
nanotubes 204±205, 205, |
LEEM 216, 218 |
13±15, 13, 14, 120 |
293±294, 294 |
SEM (SEMPA) 216, 217, |
substrate(s), diVusion and |
group IV (C, Si, Ge, Sn) 32, |
223, 223 |
growth on 144±181 |
50, 62(p), 227±232, |
Spindt cathodes 204, 205, 294 |
diVusion into 179±181 |
235±252, 264, 277±280, |
sputtering, see ion beam and |
interactive versus inert |
289±291 |
ion bombardment |
135 |
hetero-structures and |
step(s), at surfaces 6±7, |
patterned 280, 295 |
devices 260±280, |
174±180, 195±197, 200, |
preparation of 49±50, 62(p), |
297±299 |
243±249, 253±256 |
159, 323±325(a) |
III±V compound (GaAs, |
adatom capture at 17±19, |
Rayleigh wave 127, 127 |
GaN etc.) 62(p), 230, |
35(p), 163, 174±176, |
rotation, for thin Wlm |
232±235, 252±256, |
182±183(p), 245±249, 246 |
uniformity 55±56, 55 |
265±266, 274±280 |
as adatom sources 176±179, |
see also alkali halide, |
wide band-gap, II±VI (ZnS, |
178 |
Xuoride, graphite, mica, |
etc.) and IV±VI 230, 235, |
atomistic versus continuum |
oxide, and noble, |
252±253, 256, 291±293 |
models, 182±183(p), |
refractory or transition |
see also graphite, |
255±256 |
metals |
reconstructions, |
decoration of, nucleation at |
superconductivity 190, |
semiconductor processing |
174±176, 175, 177 |
224±225(p), 281 |
Index |
|
371 |
|
|
|
supersaturation, Dm 15±19, |
of Si and Ge(111) 235±239, |
driving force for crystal |
17±19, 34(p), 147±149, |
244±245 |
growth 15±19, 34(p) |
147, 149, 193 |
and tension 3±5, 9, 200, |
equilibrium with vapor |
surface analysis techniques |
256 |
11±15, 34(p) |
63±105, 306±308(a) |
in TLK model 5±7, 34(p) |
formulae and potentials 1±4, |
classiWcation as scattering |
values for metals 196±200, |
314±317(a) |
experiments 63±64 |
198 |
versus kinetic argument |
diVraction conditions for |
surface phonons 74±75, |
9±19 |
scattering 70, 105±106(p) |
105±106(p), 127±128, 127 |
techniques 64, 115±118, |
sensitivity, via inelastic |
see also vibrations |
115±117, 125, 128 |
mean free path 64, 87±90, |
surface preparation and |
thin Wlm deposition 54±60, 55, |
89, 93±94, 94, 104 |
cleaning 47±50, 62(p), |
56, 58, 59 |
see also electron diVraction, |
323±325(a) |
by sputtering and ion-beams |
electron spectroscopy, |
surface segregation 179±181, |
57±59 |
microscopy, X-ray |
180, 251±252, 278±279 |
by thermal and electron |
diVraction |
surface stress, strain 4, 193, |
beam evaporation 54±57, |
surface diVusion 16±17, 139, |
242±244, 249±252 |
55, 56, 61(p) |
147, 167±181, 206±208, |
surface structure, steps see |
see also chemical vapor |
243, 246±251 |
reconstructions, steps, |
deposition, crystal |
adatom hopping 16±17, 147, |
vicinal surfaces |
growth, epitaxial growth, |
167±172 |
surface tension, see surface |
molecular beam epitaxy |
and current Xuctuations |
energy |
tight-binding method 190, |
206±208, 208 |
surface thermodynamics 1±9, |
230±231, 257±258(p), |
eVect of strain 171, |
314±317(a) |
328±330(a) |
178±179, 243 |
surface vacancies, pits 7, |
transistors, high electron |
exchange mechanism 168, |
174±34, 175, 177±178, |
mobility 280 |
171±172 |
183(p) |
single electron 283±284 |
FIM studies 167±169, 168, |
surfactants 153±154, 250 |
transition metals (Fe, Co, Ni, |
171±172, 176 |
symmetry and symmetry |
Cr etc.) |
in Ostwald ripening |
breaking 210±213, 300 |
(band) structures and |
176±179, 183(p) |
synchrotron radiation facilities |
magnetism 218±222, |
mass transfer 139, 176, |
37±38, 51±53, 71, 78±81, |
220±221, 226(p) |
183(p) |
313(w) |
cohesive energies 190±192, |
for Si and Ge/Si(001) 243, |
for angular resolved UPS |
192, 218±219 |
246±251 |
and XPS, 78±81, 78 |
small particle growth |
see also interdiVusion |
sample transfer device for |
161±164, 162 |
surface electronic terms 30±33, |
51±52, 53 |
spin-dependent scattering |
31, 32 |
for surface X-ray diVraction |
285±287, 286 |
surface (free) energy 1±9, |
51±52, 53, 71 |
as substrates 118, 171±173, |
145±149, 196±200, |
and vacuum design 37±38, |
179±181 |
235±245, 249 |
61(p), 313(w) |
surface energies 219, |
anisotropy, g-plots 5, 7±9, 8, |
|
226(p) |
10, 11, 198±200, 244±245 |
terrace±ledge±kink (TLK) |
surface preparation 49±50, |
entropy 4, 9, 200, 243±245, |
model 5±7, 6, 7, 34(p) |
62(p) |
258±259(p) |
thermal desorption |
transmission high energy |
experiment-theory |
spectroscopy (TDS) |
electron diVraction |
comparison 198±200 |
127±128, 127 |
(THEED) 66, 72±75, 136, |
in nucleation and growth |
thermal-Weld emission (TFE) |
292 |
models 145±149, 147, |
206±207, 209 |
of adsorbed Kr and Xe/ |
149 |
thermionic emission 200±202, |
graphite 120±121, |
of Si and Ge(001) 239±243, |
225(p), 261 |
125±126 |
249 |
thermodynamic |
and Si(111) structure 236 |

372 Index
transmission electron |
eVect on vapor pressure |
at Si and Ge(001) surfaces |
microscopy (TEM) |
34±35(p) |
239±242, 241, 258±259(p) |
65±66 |
vacancy line defects 250, 252 |
techniques for measuring |
of deposited metals |
vacancy model of Si(001) 27 |
127±128, 134 |
135±137, 136, 157±159, |
vacuum, kinetic theory of |
see also Einstein model |
158, 174±176, 175, 177 |
36±38, 39 |
vicinal surface, deWnition 7±9, |
of nanometer scale devices |
conductance and pumping |
7, 8 |
287±294, 288, 292, 294 |
speed 39±42, 40, 41 |
semiconductor growth on |
of semiconductor interfaces |
gauges 46±47 |
245±256, 246, 251, 254, |
250±251, 251, 265 |
see also ultra-high vacuum |
255 |
|
valence band oVset 273±279 |
see also crystal growth, steps |
ultra-high vacuum (UHV) |
Van der Waals energy, force |
at surfaces |
36±54, 60±61(p), 313(w), |
108, 160 |
Volmer±Weber growth mode |
318±325(a) |
Lennard±Jones potentials |
146, 146 |
bakeout procedures 40, |
for 23±25, 24, 114, 114 |
volumetric measurements |
45±47, 48 |
vapor pressure 11±15, |
115±118, 115±117, 126 |
and clean surface |
34±35(p), 45±46, 55±56, |
|
preparation 38, 47±50, |
61(p), 156, 313(w), |
Walton relation 151, 183(p) |
323±325(a) |
320±322(a) |
Wentzel±Kramers±Brillouin |
gas composition 46±47, 48, |
eVects of vibrations and |
approximation |
52 |
vacancies 34±35(p) |
225±226(p) |
hardware and system design |
and evaporation (Knudsen) |
Wigner±Seitz sphere, radius rs |
38, 42±45, 60±61(p), |
sources 55±56, 61(p) |
185±188, 188, 196±198, |
318±319(a) |
of materials for use in UHV |
198, 224±225(p) |
materials for use in, 45±46, |
45±46, 313(w), 320±322(a) |
work function 30±31, 95±97, |
313(w), 320±322(a) |
and nucleation models 156 |
185±188, 195±196, |
molecular density and mean |
quasi-harmonic model |
209±210 |
free path 37±38, 39 |
11±13, 13 |
of adsorbates 95±97, 96±97, |
and particle accelerators |
values for selected elements |
195±196, 196, 209±210 |
37±38, 61(p), 313(w) |
13±15, 13, 14 |
deWnition 30, 31 |
and production processes |
vibrations (of atoms, |
in jellium model 185±188, |
52±54 |
molecules, at surfaces, |
188 |
pump types and |
etc.) |
measurement methods 193 |
performance, speed |
adlayer±substrate coupling |
and patch Welds 193±195, |
43±45, 319(a) |
127±128, 127 |
209 |
system pressure 39±40, 39, |
anharmonic 22±25, 114, |
and secondary electrons |
42, 46±47, 48 |
125, 192, 239±242, 241, |
95±97, 96±97, 209±210 |
transfer devices 51±52, |
258±259(p) |
and steps 195±197, |
53 |
Debye model 128 |
196±197 |
uniaxial anisotropy 212±213 |
and desorption 16±17, |
values 186, 188, 193±197 |
units and conversion factors |
34(p), 128 |
WulV construction, theorem |
309±311(a) |
of Kr and Xe on graphite |
7±9, 8 |
monolayer (ML) and arrival |
and metals 120, 122±128, |
|
time 38, 39 |
126, 127 |
X-ray, diVraction from surface |
pressure 37 |
in oxygen chemisorption 134 |
30, 51±52, 53, 64, 71, |
universality classes 211±212 |
partition functions for |
105±106(p), 236 |
|
109±114, 142±143(p) |
Xuorescence, total reXection |
vacancies, eVect on diVusion |
quasi-harmonic 11, 25, 114 |
(TXRF) 269 |
176, 183(p) |
of Si and Ge 231 |
XY model 129, 211 |