Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Reactive Intermediate Chemistry

.pdf
Скачиваний:
200
Добавлен:
08.01.2014
Размер:
12.65 Mб
Скачать

REACTIVITY 111

minimum and is formed without crossing a barrier), but in acyl substitutions on other substrates, such as acid chlorides, Brauman has shown that the tetrahedral

species can be an energy maximum (i.e., transition state) on the potential energy surface.192,193 With CF3 , an addition product is formed, but it does not continue

with the substitution process.194 The difference in reactivity between the two anions can be understood from the thermodynamics of the reactions. The cyanoacetone that is formed in the reaction with CH2C N is expected to be very acidic given that ketones are reasonably acidic in the gas phase and cyano is a powerful acidifying group. The enhanced acidity allows the overall substitution–methanal expulsion process to be exothermic. With CF3 , the resulting ketone, MeC(O)CF3, is not quite acidic enough to allow for an exothermic substitution process. Of course, it is more acidic than MeOH in the gas phase (i.e., MeO can deprotonate it), but not by enough to overcome the inherent endothermicity of the conversion of an ester to a ketone. With both nucleophiles, proton transfer also occurs and produces the ester enolate of methyl acetate.

 

 

 

 

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

CCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

3

C

 

 

 

 

C

 

 

 

 

 

OCH

 

2

 

H3 C

 

 

C

 

 

 

OCH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2C

 

N

 

 

 

CF3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

OCH3

 

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

CH2C

 

 

N

 

 

 

 

 

 

 

CF3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2 C

 

 

 

C

 

 

 

CF3

 

 

 

H3 C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

CHC

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ CH3OH

+ CH3OH

Scheme 3.15

When CF3 is allowed to react with methyl benzoate, a new reaction channel appears along with the formation of the carbonyl addition product (Eq. 25).194 The nucleophile attacks at the methyl group to give an SN2 substitution with the formation of the benzoate ion. In this case, proton transfer is not possible (no a hydrogens), but benzoate is a better leaving group than acetate and substitution at the methyl group becomes viable.

 

 

 

 

O

 

O

CF

 

C

O + MeCF3

 

 

 

 

 

 

 

3

 

 

ð25Þ

C

OMe

 

 

O

 

 

 

 

C

OMe

 

 

 

 

 

 

 

 

CF3

 

112 CARBANIONS

6. CONCLUSION AND OUTLOOK

Although past studies have laid out an impressive foundation for our understanding of carbanions as reactive intermediates, there are still many facets of the subject to be explored. Three areas seem particularly rich for future studies. First, work in the 1990s began the process of exploring carbanion salts under conditions that are similar to those employed in organic synthesis. The solvents, concentrations, and cosalts that are involved in synthesis offer a range of added complications in the study of

carbanion reactivity, particularly in terms of the ion pairing of the carbanion. Work by Collum,195–197 Streitwieser,95,131,132,198 their co-workers, and others199–202 has

pointed to a wide variety of aggregates that may be simultaneously present in solution and have differing reactivities. A key issue is unraveling which of these aggregate structures is responsible for the observed chemistry and requires a knowledge of the concentrations of the various aggregates as well as their relative reactivities. The situation is complicated by the fact that the ionic products of the reactions can join into the mix of aggregates and alter the kinetics of the reaction as it progresses. This area is barely tapped and future experimental and computational work on the problem should offer important insights of synthetic utility.

Second, although a considerable body of work on carbanions already has been completed in the gas phase, much remains to be done.189 The gas phase offers two attractive features in studying reactive intermediates. For one, by eliminating solvent and ion-pairing effects, it provides a baseline for judging the intrinsic factors that control carbanion stability and reactivity. Comparisons between gas-phase and condensed-phase data give clear clues as to the roles that solvent and counterions play in stabilizing carbanions and directing their reactivity. In the next few years, much will be learned as chemists explore a wider range of carbanion reactions in the gas phase. In addition, gas-phase studies, particularly those that also incorporate

spectroscopy (e.g., PES), offer the potential of gaining exquisitely accurate data on the basicity of carbanions as well as their structural properties.203,204

Finally, carbanions play important roles in a number of biological processes and many enzyme-catalyzed reactions involve carbanions as reactive intermediates.205–209 These systems can be exceptionally large and complicated, and offer new challenges in terms of methodologies. Problems involving carbanion intermediates in biology will be addressed by not only the standard approaches of physical organic chemistry, but also the emerging technologies of molecular biology and computational modeling. One already is seeing powerful collaborations of these methods in

pursuit of detailed mechanisms for biologically relevant transformations and undoubtedly this area will see much growth in the next decade.210,211

SUGGESTED READING

E.Buncel and J. M. Dust, Carbanion Chemistry: Structures and Mechanisms, American Chemical Society, Washington, DC, 2002.

D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965.

REFERENCES 113

E.Buncel and T. Durst, Eds., Comprehensive Carbanion Chemistry, Part A: Structure and Reactivity, Elsevier, New York, 1980.

E.Buncel and T. Durst, Eds., Comprehensive Carbanion Chemistry, Part B: Selectivity in Carbon–Carbon Bond Forming Reactions, Elsevier, New York, 1983.

E.Buncel and T. Durst, Eds., Comprehensive Carbanion Chemistry, Part C: Ground and Excited State Reactivity, Elsevier, New York, 1987.

R. B. Bates and C. A. Ogle, Carbanion Chemistry, Springer-Verlag, Berlin, 1983.

E.M. Kaiser and D. W. Slocum, in Organic Reactive Intermediates, S. P. McManus, Ed., Academic Press, New York, 1973.

T.H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Harper Collins, New York, 1987, pp. 284–308 and 517–540.

R. R. Squires, ‘‘Gas Phase Carbanion Chemistry,’’ Acc. Chem Res. 1992, 25, 461.

W. B. Farnham, ‘‘Fluorinated Carbanions,’’ Chem Rev. 1996, 96, 1633.

REFERENCES

1.M. Schlosser, Organometallics in Synthesis : A Manual; 2nd ed., John Wiley & Sons, Inc., New York, 2002.

2.J. H. Bateson and M. B. Mitchell, Organometallic Reagents in Organic Synthesis, Academic Press, London, 1994.

3.F. R. Hartley, Organometallic Compounds in Organic and Biological Syntheses, John Wiley & Sons, Inc., New York, 1989.

4.S. Patai, Ed., The Chemistry of the Carbonyl Group, Vol. 1, Wiley-Interscience, London,

1966.

5.R. E. Gawley, Principles of Asymmetric Synthesis, Elsevier, Oxford, 1996.

6.B. J. Wakefield, Organolithium Methods, Academic Press, London, 1988.

7.B. J. Wakefield, Organomagnesium Methods in Organic Synthesis, Academic Press, London, 1995.

8.J. C. Stowell, Carbanions in Organic Synthesis, Wiley-Interscience, New York,

1979.

9.V. Grignard, Ann. Chim. 1901, 24, 433.

10.M. S. Kharasch and O. Reinmuth, Grignard Reactions of Nonmetallic Substances, Prentice Hall, New York, 1954.

11.W. Hallwachs and F. Schafarik, Annals 1859, 109, 206.

12.A. Cahours, Annals 1859, 114, 227.

13.W. Schlenk and J. Holtz, Berchte 1917, 50, 271.

14.A. Streitwieser, Jr., S. M. Bachrach, A. Dorigo, and P. v. R. Schleyer, in Lithium Chemistry: A Theoretical and Experimental Overview, A.-M. Sapse, and P. v. R. Schleyer, Eds., Wiley-Interscience, New York, 1995.

15.G. Jones, Org. React. 1967, 15, 204.

16.E. Knoevenagel, Berchte 1898, 31, 2596.

17.L. Claisen, Berchte 1890, 23, 977.

18.J. B. Conant and G. W. Wheland, J. Am. Chem. Soc. 1932, 54, 1212.

114CARBANIONS

19.W. K. McEwen, J. Am. Chem. Soc. 1936, 58, 1124.

20.D. E. Applequist and D. F. O’Brien, J. Am. Chem. Soc. 1963, 85, 743.

21.R. M. Salinger and R. E. Dessey, Tetrahedron Lett. 1963, 11, 729.

22.J. N. Brønsted, Chem. Rev. 1928, 5, 231.

23.A. I. Shatenshtein, Adv. Phys. Org. Chem. 1963, 1, 155.

24.A. Streitwieser, Jr., R. A. Caldwell, and M. R. Granger, J. Am. Chem. Soc. 1964, 86, 3578.

25.A. Streitwieser, Jr., R. A. Caldwell, R. G. Lawler, and G. R. Ziegler, J. Am. Chem. Soc. 1965, 87, 5399.

26.A. Streitwieser, Jr., W. B. Hollyhead, G. Sonnichsen, A. H. Pudjaatmaka, C. J. Chang, and T. L. Kruger, J. Ame. Chem. Soc. 1971, 93, 5096.

27.A. Streitwieser, Jr. and R. G. Lawler, J. Am. Chem. Soc. 1963, 85, 2854.

28.A. Streitwieser, Jr., D. E. Van Sickle, and W. C. Langworthy, J. Am. Chem. Soc. 1962, 84, 244.

29.A. Streitwieser, Jr. and H. F. Koch, J. Am. Chem. Soc. 1964, 86, 404.

30.A. Streitwieser, Jr. and D. Holtz, J. Am. Chem. Soc. 1967, 89, 692.

31.A. Streitwieser, Jr. and J. S. Humphrey, Jr., J. Am. Chem. Soc. 1967, 89, 3767.

32.A. Streitwieser, Jr. and G. R. Ziegler, Tetrahedron Lett. 1971, 415.

33.A. Streitwieser, Jr. W. B. Hollyhead, and A. H. Pudjaatmaka, J. Am. Chem. Soc. 1971, 93, 5088.

34.A. Streitwieser, Jr., P. C. Mowery, and W. R. Young, Tetrahedron Lett. 1971, 3931.

35.A. Streitwieser, Jr. and D. W. Boerth, J. Am. Chem. Soc. 1978, 100, 755.

36.A. Streitwieser, Jr. and D. E. Van Sickle, J. Am. Chem. Soc. 1962, 84, 249.

37.D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965.

38.F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456.

39.M. I. Terekhova, E. S. Petrov, S. P. Mesyats, and A. I. Shatenshtein, Zh. Obshch. Khim. 1975, 45, 1529.

40.A. Streitwieser, Jr., J. H. Hammons, and E. Ciuffarin, J. Am. Chem. Soc. 1967, 89, 59.

41.A. Streitwieser, Jr. and D. M. E. Reuben, J. Am. Chem. Soc. 1971, 93, 1794.

42.A. Streitwieser, Jr., P. J. Scannon, and H. M. Niemeyer, J. Am. Chem. Soc. 1972, 94, 7936.

43.A. Streitwieser, Jr., C. J. Chang, and D. M. E. Reuben, J. Am. Chem. Soc. 1972, 94, 5730.

44.A. Streitwieser, Jr., C. J. Chang, and W. B. Hollyhead, J. Am. Chem. Soc. 1972, 94, 5292.

45.A. Streitwieser, Jr. and P. J. Scannon, J. Am. Chem. Soc. 1973, 95, 6273.

46.A. Streitwieser, Jr., E. A. Vorpagel, and C. C. Chen, J. Am. Chem. Soc. 1985, 107, 6970.

47.A. Streitwieser, Jr. and G. W. Schriver, Hetero. Chem. 1997, 8, 533.

48.S. Gronert and A. Streitwieser, Jr., J. Am. Chem. Soc. 1986, 108, 7016.

49.D. A. Bors, M. J. Kaufman, and A. Streitwieser, Jr., J. Am. Chem. Soc. 1985, 107, 6975.

50.A. Streitwieser, Jr., J. C. Ciula, and J. A. Krom, Thiele J. Org. Chem. 1991, 56, 1074.

51.A. Streitwieser, Jr., D. Z. Wang, and M. Stratakis, Can. J. Chem. 1998, 76, 765.

52.E. S. Petrov, M. I. Terekhova, and A. I. Shatenshtein, Zh. Obshch. Khim. 1974, 44, 1118.

REFERENCES 115

53.E. S. Petrov, M. I. Terekhova, A. I. Shahtenstein, B. A. Trofimov, R. G. Mirskov, and

M.G. Voronkov, Dokl. Akad. Nauk. SSSR 1973, 211, 1393.

54.J. E. Bartmess, in NIST Standard Reference Database Number 69, W. G. Mallard, and

P.J. Linstrom, Eds., National Institute of Standards and Technology (http://webbook. nist.gov): Gaithersburg, MD, 2002.

55.G. B. Ellison, P. C. Engelking, and W. C. Lineberger, J. Am. Chem. Soc. 1978, 100, 2556.

56.R. H. Nobes, D. Poppinger, W.-K. Li, and L. Radom, in Comprehensive Carbanion Chemistry, Part C, E. Buncel, and T. Durst, Eds., Elsevier, New York, 1987; p. 1.

57.D. A. Dixon, D. Feller and K. A. Peterson, J. Phys. Chem. A 1997, 101, 9405.

58.A. Rauk, L. C. Allen, and K. Mislow, Angew. Chem. Int. Ed. Engl. 1970, 9, 400.

59.P. v. R. Schleyer and G. W. Spitznagel, Tetrahedron Lett. 1986, 27, 4411.

60.K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. Harrison, V. M. Bierbaum,

C.H. DePuy, W. C. Lineberger, and G. B. Ellison, J. Am. Chem. Soc. 1990, 112, 5750.

61.R. L. Letsinger, J. Am. Chem. Soc. 1950, 72, 4842.

62.D. Y. Curtin and W. J. Koehl, J. Am. Chem. Soc. 1962, 84, 1967.

63.F. R. Jensen, L. D. Whipple, D. K. Wedegaertner, and J. A. Landgrebe, J. Am. Chem. Soc. 1960, 82, 2466.

64.P. K. Chou, G. D. Dahlke, and S. R. Kass, J. Am. Chem. Soc. 1993, 115, 315.

65.R. E. Carter, T. Drakenberg, and N.-A. Bergman, J. Am. Chem. Soc. 1975, 97, 6990.

66.M. J. S. Dewar and J. M. Harris, J. Am. Chem. Soc. 1969, 91, 3652.

67.H. M. Walborsky, F. J. Impastato, and A. E. Young, J. Am. Chem. Soc. 1964, 86, 3283.

68.M. C. Baschky, K. C. Peterson, and S. R. Kass, J. Am. Chem. Soc. 1994, 116, 7218.

69.D. J. Cram, W. D. Nielsen, and B. Rickborn, J. Am. Chem. Soc. 1960, 82, 6415.

70.E. J. Corey and E. T. Kaiser, J. Am. Chem. Soc. 1961, 83, 490.

71.D. J. Cram, D. A. Scott, and W. D. Nielsen, J. Am. Chem. Soc. 1961, 83, 3696.

72.D. A. Bors and A. Streitwieser, Jr., J. Am. Chem. Soc. 1986, 108, 1397.

73.S. Wolfe, A. Stolow, and L. A. LaJohn, Tetrahedron Lett. 1983, 24, 4071.

74.K. A. R. Mitchell, Chem. Rev. 1969, 69, 157.

75.H. E. Zimmerman and B. S. Thyagarajan, J. Am. Chem. Soc. 1960, 82, 2505.

76.H.-J. Gais and G. Hellman, J. Am. Chem. Soc. 1992, 114, 4439.

77.H. Gunther, J. Braz. Chem. Soc. 1999, 10, 241.

78.W. Bauer, in Lithium Chemistry: A Theoretical and Experimental Overview, A.-M. Sapse, and P. v. R. Schleyer, Eds., Wiley-Interscience, New York, 1995.

79.D. O’Brien, in Comprehensive Carbanion Chemistry, Part A: Structure and Reactivity;

E.Buncel, and T. Durst, Eds., Elsevier, Amsterdam, The Netherlands, 1980, p. 271.

80.L. D. McKeever, in Ions and Ion Pairs in Organic Reactions, M. Szwarc, Ed., WileyInterscience, New York, 1972.

81.G. Fraenkel, H. Hsu, and B. M. Su, in Lithium: Current Applications in Science and Medical Technology, R. Bach, Ed., John Wiley & Sons, Inc., New York, 1985.

82.L. M. Jackman and J. Bortiatynski, Adv. in Carbanion Chem. 1992, 1, 45.

83.T. L. Brown, Acc. Chem. Res. 1968, 1, 23.

84.S. Bywater and D. J. Worsfold, Adv. Organomet. Chem. 1967, 10, 1.

85.E. Weiss and G. Hencken, J. Organomet. Chem. 1970, 21, 265.

116CARBANIONS

86.P. G. Willard and M. J. Hintze, J. Am. Chem. Soc. 1987, 109, 5539.

87.A.-M. Sapse, D. C. Jain, and K. Raghavachari, in Lithium Chemistry: A Theoretical and Experimental Overview, A.-M. Sapse, and P. v. R. Schleyer, Eds., Wiley-Interscience, New York, 1995.

88.L. M. Seitz and T. L. Brown, J. Am. Chem. Soc. 1966, 88, 2174.

89.R. Waack and P. West, J. Am. Chem. Soc. 1967, 89, 4395.

90.H. J. Reich, D. P. Green, M. A. Medina, W. S. Goldenberg, B. O. Gudmundsson, R. R. Dykstra, and N. H. Phillips, J. Am. Chem. Soc. 1998, 120, 7201.

91.O. Eppers and H. Gunther, Helv. Chim. Acta 1990, 73, 2071.

92.D. P. Novak and D. L. Brown, J. Am. Chem. Soc. 1972, 94, 3793.

93.R. Waak, M. A. Doran, and E. B. Baker, Chem. Cummun. 1967, 1291.

94.P. L. Hall, J. H. Gilchrist, A. T. Harrison, D. J. Fuller, and D. B. Collum, J. Am. Chem. Soc. 1991, 113, 9575.

95.F. Abu-Hasanayn and A. Streitwieser, Jr., J. Am. Chem. Soc. 1996, 118, 8136.

96.A. Streitwieser, Jr., E. Juaristi, Y.-J. Kim, and J. K. Pugh, Org. Lett. 2000, 2, 3739.

97.X. Sun and D. B. Collum, J. Am. Chem. Soc. 2000, 122, 2459.

98.T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; 3rd ed., Harper Collins, New York, 1987.

99.A. Streitwieser, Jr., M. R. Granger, F. Mares, and R. A. Wolf, J. Am. Chem. Soc. 1973, 95, 4257.

100.R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc 1953, 75, 24393.

101.A. Streitwieser, Jr., P. H. Owens, G. Sonnichsen, and W. Smith, J. Am. Chem. Soc. 1973, 95, 4254.

102.C. H. DePuy, S. Gronert, S. E. Barlow, V. M. Bierbaum, and R. Damrauer, J. Am. Chem. Soc. 1989, 111, 1968.

103.J. Wong, K. A. Sannes, C. E. Johnson, and J. I. Brauman, J. Am. Chem. Soc. 2000, 122, 10878.

104.R. G. Cooks, J. S. Patrick, T. Kotiaho, and S. A. McLuckey, Mass Spectrum. Rev. 1994, 13, 287.

105.P. Burk and K. Sillar, J. Mol. Struct. (Theochem.) 2001, 535, 49.

106.R. R. Sauers, Tetrahedron 1999, 55, 10013.

107.L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96.

108.C. Hansch, A. Leo, and R. W. Taft, Chem. Rev. 1991, 91, 165.

109.K. Mislow, Introduction to Stereochemistry, W. A. Benjamin, Inc., New York, 1966.

110.A. Streitwieser, Jr., R. A. Caldwell, and W. R. Young, J. Am. Chem. Soc. 1969, 91, 529.

111.K. B. Wiberg and H. Castejon, J. Am. Chem. Soc. 1994, 116, 10489.

112.A. E. Reed and P. v. R. Schleyer, J. Am. Chem. Soc. 1990, 112, 1434.

113.O. A. Reutov, I. P. Beletskaya, and A. L. Kurts, Ambident Anions, Plenum, New York, 1983.

114.M. E. Jones, S. R. Kass, J. Filley, R. M. Barkley, and G. B. Ellison, J. Am. Chem. Soc. 1985, 107, 109.

115.Y. Chiang, A. J. Kresge, and P. A. Walsh, J. Am. Chem. Soc. 1986, 108, 6314.

REFERENCES 117

116.F. G. Bordwell, J. E. Barres, J. E. Bartmess, G. J. McCollum, M. Van Der Puy,

N.R. Vanier, and W. S. Matthews, J. Org. Chem. 1977, 42, 321.

117.R. Stewart, The Proton: Applications to Organic Chemistry, Academic Press, Orlando, FL, 1985.

118.K. M. Broadus, S. D. Han, and S. R. Kass, J. Org. Chem. 2001, 66, 99.

119.U. Molder, P. Burk, and I. A. Koppel, Int. J. Quant. Chem. 2001, 82, 73.

120.S. Gronert, unpublished results.

121.C. F. Bernasconi and P. J. Wenzel, J. Am. Chem. Soc. 2001, 123, 7146.

122.Z. Glasovac, M. Eckert-Maksic, K. M. Broadus, M. C. Hare, and S. R. Kass, J. Org. Chem. 2000, 65, 1818.

123.U. Molder, P. Burk, and I. A. Koppel, Int. J. Quantum Chem. 2001, 82, 73.

124.R. A. Cox and R. Stewart, J. Am. Chem. Soc. 1976, 98, 488.

125.A. Streitwieser, Jr., E. Juaristi, and L. L. Nebenzahl, in Comprehensive Carbanion Chemistry, Part A: Structure and Reactivity, E. Buncel, and T. Durst, Eds., Elsevier, Amsterdam, The Netherlands, 1980, p. 323.

126.E. M. Arnett and J. A. Harrelson, Jr., J. Am. Chem. Soc. 1987, 109, 809.

127.F. G. Bordwell, J. E. Bartmess, and J. A. Hautala, J. Org. Chem. 1978, 43, 3095.

128.E. M. Arnett, T. C. Moriarty, L. E. Small, J. P. Rudolph, and R. P. Quirk, J. Am. Chem. Soc. 1973, 95, 1492.

129.E. M. Arnett and K. G. Ventatasubramaniam, J. Org. Chem. 1983, 48, 1569.

130.E. M. Arnett and L. E. Small, J. Am. Chem. Soc. 1977, 99, 808.

131.A. Streitwieser, Jr., J. A. Krom, and K. V. Kilway, J. Am. Chem. Soc. 1998, 120, 10801.

132.A. Abbotto and A. Streitwieser, Jr., J. Am. Chem. Soc. 1995, 117, 6358.

133.M. J. Kaufman, S. Gronert, and A. Streitwieser, Jr., J. Am. Chem. Soc. 1988, 110, 2829.

134.R. A. Cox and R. Stewart, J. Am. Chem. Soc. 1976, 98, 488.

135.R. W. Taft and F. G. Bordwell, Acc. Chem. Res. 1988, 21, 463.

136.A. Streitwieser, Jr., W. B. Hollyhead, G. Sonnichsen, A. H. Pudjaatmaka, C. J. Chang, and T. L. Kruger, J. Am. Chem. Soc. 1971, 93, 5096.

137.A. Streitwieser, Jr., J. Am. Chem. Soc. 1973, 95, 4257.

138.A. Streitwieser, Jr., M. J. Kaufman, D. A. Bors, J. R. Murdoch, C. A. MacArthur,

J.T. Murphy, and C. C. Shen, J. Am. Chem. Soc. 1985, 107, 6983.

139.A. Streitwieser, Jr., D. Holtz, G. R. Ziegler, J. O. Stoffer, M. L. Brokaw, and F. Guibe,

J.Am. Chem. Soc. 1976, 98, 5229.

140.F. G. Bordwell, W. J. Boyle, Jr., and K. C. Yee, J. Am. Chem. Soc. 1970, 92, 5926.

141.F. G. Bordwell and D. L. Hughes, J. Am. Chem. Soc. 1985, 107, 4737.

142.J. R. Keeffe, J. Morey, C. A. Palmer, and J. C. Lee, J. Am. Chem. Soc. 1979, 101, 1295.

143.A. J. Kresge, Can. J. Chem. 1974, 52, 1897.

144.A. Pross, Adv. Phys. Org. Chem. 1985, 21, 166.

145.D. Beksic, J. Bertran, J. M. Lluch, and J. T. Hynes, J. Phys. Chem. A 1998, 102, 3977.

146.H. Yamataka, Mustanir, and M. Mishima, J. Am. Chem. Soc. 1999, 121, 10223.

147.L. M. Dorfman, R. J. Sujdak, and B. Bockrath, Acc. Chem. Res. 1976, 9, 352.

148.J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem. 1994, 98, 2744.

149.K. E. McCullloh and V. H. Dibelerr, J. Chem. Phys. 1976, 64, 4445.

118CARBANIONS

150.K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. Harrison, V. M. Bierbaum,

C.H. Depuy, W. C. Lineberger, and G. B. Ellison, J. Am. Chem. Soc. 1990, 112, 5750.

151.G. E. Davico, V. M. Bierbaum, C. H. DePuy, G. B. Ellison, and R. R. Squires, J. Am. Chem. Soc. 1995, 117, 2590.

152.F. G. Bordwell and X. M. Zhang, Acc. Chem. Res. 1993, 26, 510.

153.R. Breslow, Pure Appl. Chem. 1974, 40, 493.

154.W. H. Saunders, Acc. Chem. Res. 1976, 9, 19.

155.W. P. Jencks, Acc. Chem. Res. 1980, 13, 161.

156.F. G. Bordwell, Acc. Chem. Res. 1972, 5, 374.

157.J. R. Keeffe and W. P. Jencks, J. Am. Chem. Soc. 1981, 103, 2547.

158.J. R. Keeffe and W. P. Jencks, J. Am. Chem. Soc. 1983, 105, 265.

159.R. Breslow, Tetrahedron Lett. 1964, 399.

160.F. G. Larkin, R. A. More O’Farrall, and D. G. Murphy, Collect. Czech. Chem. Commun. 1999, 64, 1833.

161.Z. S. Jia, J. Rudzinski, P. Paneth, and A. Thibblin, J. Org. Chem. 2002, 67, 177.

162.W. H. Saunders, J. Org. Chem. 1999, 64, 861.

163.S. Hoz, J. Org. Chem. 1983, 48, 2904.

164.C. F. Bernasconi, Acc. Chem. Res. 1987, 20, 301.

165.A. Campagni, G. Modena, and P. E. Todesco, Gazz. Chim. Ital. 1960, 90, 694.

166.C. F. Bernasconi, M. W. Stronach, C. H. DePuy, and S. Gronert, J. Am. Chem. Soc. 1990, 112, 9044.

167.J. Meisenheimer, Justus Liebigs Ann. Chem. 1902, 323, 205.

168.S. M. Briscese and J. M. Riveros, J. Am. Chem. Soc. 1975, 97, 230.

169.C. F. Bernasconi, Acc. Chem. Res. 1978, 11, 147.

170.E. Buncel, J. M. Dust, and F. Terrier, Chem. Rev. 1995, 95, 2261.

171.J. F. Bunnett and R. E. Zahler, Chem. Rev. 1951, 49, 273.

172.G. Wittig and L. Lohman, Ann. 1942, 550, 260.

173.G. Wittig, Angew. Chem. 1954, 66, 10.

174.J. F. Garst and C. D. Smith, J. Am. Chem. Soc. 1976, 98, 1526.

175.P. T. Lansbury and V. A. Pattison, J. Org. Chem. 1962, 27, 1933.

176.J. C. Sheldon, M. S. Taylor, J. H. Bowie, S. Dua, C. S. B. Chia, and P. C. H. Eichinger,

J.Chem. Soc., Perkin 2 1999, 333.

177.P. Antoniotti and G. Tonachini, J. Org. Chem. 1998, 63, 9756.

178.T. Nakai and K. Mikami, Chem. Rev. 1986, 86, 885.

179.E. J. Verner and T. Cohen, J. Am. Chem. Soc. 1992, 114, 375.

180.H. E. Zimmerman and A. Zwieg, J. Am. Chem. Soc. 1961, 83, 1196.

181.J. A. Bertrand and E. Grovenstein, Jr., J. Am. Chem. Soc. 1976, 98, 7835.

182.E. Grovenstein, Jr. and R. E. Williamson, J. Am. Chem. Soc. 1975, 97, 646.

183.E. Grovenstein, Jr. and P.-C. Lu, J. Org. Chem. 1982, 47, 2928.

184.A. S. Kende, Org. React. 1960, 11, 261.

185.C. Rappe, L. Knutsson, N. J. Turro, and R. B. Gagosian, J. Am. Chem. Soc. 1970, 92, 2032.

REFERENCES 119

186.W. B. Hanmmond and N. J. Turro, J. Am. Chem. Soc. 1966, 88, 2880.

187.F. G. Bordwell and M. W. Carlson, J. Am. Chem. Soc. 1969, 92, 3370.

188.R. Castillo, J. Andres, and V. Moliner, J. Phys. Chem. B 2001, 105, 2453.

189.S. Gronert, Chem. Rev. 2001, 101, 329.

190.W. N. Olmstead and J. I. Brauman, J. Am. Chem. Soc. 1977, 99, 4219.

191.B. T. Frink and C. M. Hadad, J. Chem Soc., Perkin Trans. 2 1999, 2397.

192.J. L. Wilbur and J. I. Brauman, J. Am. Chem. Soc. 1994, 116, 9216.

193.S. Baer, E. B. Brinkman, and J. I. Brauman, J. Am. Chem. Soc. 1991, 113, 805.

194.R. N. McDonald and A. K. Chowdhury, J. Am. Chem. Soc. 1983, 105, 7267.

195.X. F. Sun and D. B. Collum, J. Am. Chem. Soc. 2000, 122, 2452.

196.X. F. Sun and D. B. Collum, J. Am. Chem. Soc. 2000, 122, 2459.

197.J. L. Rutherford, D. Hoffmann, and D. B. Collum, J. Am. Chem. Soc. 2002, 124, 264.

198.F. Abu-Hasanayn and A. Streitwieser, Jr., J. Org. Chem. 1998, 63, 2954.

199.A. A. Arest-Yakubovich, J. Polym. Sci. Pol. Chem. 1997, 35, 3613.

200.S. E. Denmark and C. T. Chen, J. Am. Chem. Soc. 1995, 117, 11879.

201.D. Baskaran, A. H. E. Muller, and S. Sivaram, Macromol. Chem. Phys. 2000, 201, 1901.

202.E. M. Arnett, V. DePalma, S. Maroldo, and L. S. Small, Pure Appl. Chem. 1979, 51, 131.

203.P. G. Wenthold and W. C. Lineberger, Acc. Chem. Res. 1999, 32, 597.

204.K. M. Ervin, Chem. Rev. 2001, 101, 391.

205.L. Feng, Y. Li, and J. F. Kirsch, J. Phys. Org. Chem. 1998, 11, 536.

206.J. P. Richard and T. L. Amyes, Curr. Opin. Chem. Bio. 2001, 5, 626.

207.K. S. Kim, K. S. Oh, and J. Y. Lee, Proc. Natl. Acad. Sci. 2000, 97, 6373.

208.P. F. Fitzpatrick, K. Kurtz, G. Gadda, J. Denu, M. Rishavy, and W. W. Cleland, Biomed. Health Res. 1999, 27, 176.

209.A. Argyrou and M. W. Washabaugh, J. Am. Chem. Soc. 1999, 121, 12054.

210.M. Gondry, J. Dubois, M. Terrier, and F. Lederer, Eur. J. Biochem. 2001, 268, 4918.

211.A. Witkowski, A. K. Joshi, Y. Lindqvist, and S. Smith, Biochemistry 1999, 38, 11643.

CHAPTER 4

Radicals

MARTIN NEWCOMB

Department of Chemistry, University of Illinois at Chicago, Chicago, IL

1.

Structure and Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

122

 

1.1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

122

 

1.2. Radical Stabilities and C H Bond Dissociation Energies. . . . . . . . . . . . .

123

 

1.3. Stable and Persistent Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125

2.

Identification and Characterization of Radicals . . . . . . . . . . . . . . . . . . . . . . .

126

 

2.1. Inference from Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126

 

2.2. Indirect Kinetic Determinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

127

 

2.3. Electron Spin Resonance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . .

128

 

2.3.1. Structural Information from ESR Spectroscopy . . . . . . . . . . . . . . .

128

 

2.4. Electron Nuclear Double Resonance Spectroscopy . . . . . . . . . . . . . . . . .

131

 

2.5. Chemically Induced Dynamic Nuclear Polarization Effects . . . . . . . . . . .

132

 

2.6. Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

133

3.

Multistep Radical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

134

 

3.1. Radical Chain Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

134

 

3.2. Velocities of Radical Chain Reactions . . . . . . . . . . . . . . . . . . . . . . . . . .

136

 

3.3. Radical Nonchain Reaction Sequences. . . . . . . . . . . . . . . . . . . . . . . . . .

138

4.

Elementary Radical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

140

 

4.1. Initiations: Radicals from Closed-Shell Compounds . . . . . . . . . . . . . . . .

140

 

4.1.1. Thermolysis Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

140

 

4.1.2. Photolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

 

4.1.3. Electron Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

143

 

4.2. Elementary Propagation Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

143

 

4.2.1. Homolytic Atomand Group-Transfer Reactions . . . . . . . . . . . . . .

145

 

4.2.2. Homolytic Radical Addition and Elimination Reactions . . . . . . . . .

148

 

4.2.3. Heterolytic Radical Addition and Fragmentation Reactions. . . . . . .

153

 

4.2.4. Composite Group-Transfer Reactions . . . . . . . . . . . . . . . . . . . . . .

155

 

4.3. Radical Termination Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156

5.

Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

Suggested Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

158

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

159

Reactive Intermediate Chemistry, edited by Robert A. Moss, Matthew S. Platz, and Maitland Jones, Jr. ISBN 0-471-23324-2 Copyright # 2004 John Wiley & Sons, Inc.

121

Соседние файлы в предмете Химия