Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

информатика Лиза

.pdf
Скачиваний:
10
Добавлен:
11.03.2016
Размер:
160.68 Кб
Скачать

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ И ЭКОНОМИКИ

ИНСТИТУТ ЭКОНОМИКИ, МЕНЕДЖМЕНТА И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра Информационных технологий и математики

Реферат по дисциплине «Информатика»

на тему: «История суперкомпьютеров в России и за рубежом»

выполнила: студентка 2173-1/3-2 группы заочного отделения Шишкина Елизавета Александровна Преподаватель:

Санкт-Петербург

2015

Содержание

 

Введение..................................................................................................

3

Определение суперкомпьютера.............................................................

4

Возникновение и развитие суперкомпьютера за рубежом..................

6

Суперкомпьютеры Intel.....................................................................

8

Суперкомпьютеры IBM.....................................................................

9

Разработка и развитие суперкомпьютера в России............................

14

Самый мощный суперкомпьютер современности..............................

16

Заключение.............................................................................................

18

Список использованной литературы....................................................

19

2

Введение

По дисциплине «информатика и ИКТ» мною для изучения была выбрана тема «История суперкомпьютеров в России и за рубежом». Данная тема весьма актуальна в наше время в виду крайне динамичного развития электронных систем во всем мире. Конечно, трудно назвать сегодня «суперкомпьютером» новшества второй половины двадцатого века, так как схожими техническими характеристиками теперь обладает любой домашний компьютер. Но именно благодаря фундаментальным разработкам иностранных и советских ученых мы можем пользоваться всеми благами технического прогресса, которые еще пятьдесять лет назад были возможны только в научной фантастике.

Суперкомпьютер сегодня — это глобальная машина для управления всего на планете, зависящего от человека. Это контроль за ядерными процессами, обработка немыслимого количества информации, хранение данных каждого человека на планете и многое многое другое.

3

Определение суперкомпьютера

Суперкомпьютерами называют самые быстрые компьютеры. Все ресурсы такого компьютера обычно направлены на то, чтобы решить одну или в крайнем случае несколько задач насколько возможно быстро. Бурное развитие компьютерной индустрии определяет относительность базового понятия — то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Существует и такое шутливое определение суперкомпьютера — это устройство, сводящее проблему вычислений к проблеме ввода-вывода. Впрочем, и в нем есть доля истины: часто единственным узким местом в быстродействующей системе остаются именно устройства ввода-вывода.

В любом компьютере все основные параметры тесно связаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. По этой причине и суперкомпьютеры характеризуются в настоящее время не только максимальной производительностью, но и максимальным объемом оперативной и дисковой памяти. Обеспечение таких технических характеристик обходится довольно дорого — стоимость суперкомпьютеров чрезвычайно высока. Какие же задачи настолько важны, что требуют систем стоимостью в десятки и сотни миллионов долларов? Как правило, это фундаментальные научные или инженерные вычислительные задачи с широкой областью применения, эффективное решение которых возможно только при наличии мощных вычислительных ресурсов. Вот лишь некоторые области, где возникают задачи подобного рода:

предсказания погоды, климата и глобальных изменений в атмосфере; науки о материалах; построение полупроводниковых приборов; сверхпроводимость;

4

структурная биология; разработка фармацевтических препаратов; генетика человека; квантовая хромодинамика; астрономия; автомобилестроение; транспортные задачи; гидро - и газодинамика;

управляемый термоядерный синтез; эффективность систем сгорания топлива; разведка нефти и газа;

вычислительные задачи в науках о Мировом океане; распознавание и синтез речи; распознавание изображений.

Суперкомпьютеры считают очень быстро благодаря не только использованию самой современной элементной базы, но и новым решениям в архитектуре систем. Основное место здесь занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий. Параллельная обработка имеет две разновидности: конвейерность и собственно параллельность. Суть конвейерной обработки заключается в том, чтобы выделить отдельные этапы выполнения общей операции, причем каждый этап, выполнив свою работу, передает результат следующему, одновременно принимая новую порцию входных данных. Очевидный выигрыш в скорости обработки получается за счет совмещения прежде разнесенных во времени операций.

Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу

5

операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени.

Конечно, сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры используют тот или иной вид параллельной обработки даже в рамках одного кристалла. Вместе с тем сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных компьютерах своего времени. Здесь особая заслуга принадлежит компаниям IBM и Control Data Corporation (CDC). Речь идет о таких нововведениях, как разрядно-параллельная память, разряднопараллельная арифметика, независимые процессоры ввода-вывода, конвейер команд, конвейерные независимые функциональные устройства и т. д.

Возникновение и развитие суперкомпьютера за рубежом

Обычно слово «суперкомпьютер» ассоциируется с компьютерами марки Cray, хотя сегодня это уже далеко не так. Разработчиком и главным конструктором первого суперкомпьютера был Сеймур Крэй — один из самых легендарных личностей в компьютерной отрасли. В 1972 г . он уходит из компании CDC и основывает собственную компанию Cray Research. Первый суперкомпьютер CRAY-1 был разработан через четыре года (в 1976 г .) и имел векторно-конвейерную архитектуру с 12 конвейерными функциональными устройствами. Пиковая производительность Cray-1 составляла 160 млн операций/с (время такта 12,5 нс), а цикл 64-разрядной оперативной памяти (которая могла расширяться до 8 Мбайт) занимал 50 нс. Главным новшеством было, конечно, введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

На протяжении 60-80-х годов внимание мировых лидеров по производству суперкомпьютеров было сосредоточено на изготовлении вычислительных

6

систем, хорошо справляющихся с решением задач на большие объемы вычислений с плавающей точкой. Недостатка в таких задачах не ощущалось — почти все они были связаны с ядерными исследованиями и аэрокосмическим моделированием и велись в интересах военных. Стремление достичь максимальной производительности в самые сжатые сроки означало, что критерием оценки качества системы была не ее цена, а быстродействие. Например, суперкомпьютер Cray-1 стоил тогда от 4 до 11 млн долл.

в зависимости от комплектации.

На рубеже 80-90-х гг. закончилась «холодная» война и на смену военным заказам пришли коммерческие. К тому времени промышленность достигла больших успехов в производстве серийных процессоров. Они обладали примерно той же вычислительной мощностью, что и заказные, но были значительно дешевле. Использование стандартных комплектующих и изменяемое количество процессоров позволило решить проблему масштабируемости. Теперь с увеличением вычислительной нагрузки можно было повышать производительность суперкомпьютера и его периферийных устройств, добавляя новые процессоры и устройства ввода-вывода. Так, в 1990 г . появился суперкомпьютер Intel iPSC/860 с числом процессоров, равным 128, который показал производительность 2,6 Гфлопс.

Самым мощным суперкомпьютером мира оставалась по-прежнему система ASCI White, установленная в Ливерморской лаборатории (США) и показавшая производительность 7,2 Тфлопс на тесте LINPACK (58% от пиковой производительности). На втором месте стояла система Compaq AlphaServer SC, установленная в Питтсбургском суперкомпьютерном центре с производительностью в 4 Тфлопс. Замыкает тройку лидеров система Cray T3E с производительностью на LINPACK в 94 Гфлопс.

Стоит отметить, что список включал уже 16 систем с производительностью более 1 Тфлопс, половина из которых установлены IBM. Стабильно увеличивается число систем, представляющих собой кластеры из небольших

7

SMP-блоков, — сейчас в списке уже 43 такие системы. Однако большинство в списке по-прежнему за массивно-параллельными системами (50%), за которыми идут кластеры, состоящие из больших SMP-систем (29%).

Суперкомпьютеры Intel

Корпорация Intel хорошо известна в мире суперкомпьютеров. Ее многопроцессорные компьютеры Paragon с распределенной памятью стали такой же классикой, как векторно-конвейерные компьютеры от Cray Research.

Intel Paragon использует в одном узле пять процессоров i860 ХР с тактовой частотой 50 МГц. Иногда в один узел помещают процессоры разных типов: скалярный, векторный и коммуникационный. Последний служит для того, чтобы разгрузить основной процессор от выполнения операций, связанных с передачей сообщений.

Самая существенная характеристика новой параллельной архитектуры — тип коммуникационного оборудования. Именно от него зависят два наиболее важных показателя работы суперкомпьютера — скорость передачи данных между процессорами и накладные расходы на передачу одного сообщения.

Межсоединение сконструировано таким образом, чтобы обеспечить высокую скорость обмена сообщениями при минимальной задержке. Оно обеспечивает соединение более тысячи гетерогенных узлов по топологии двухмерной прямоугольной решетки. Однако при разработке большинства приложений можно считать, что любой узел непосредственно связан со всеми другими узлами. Межсоединение масштабируемо: его пропускная способность возрастает с увеличением числа узлов. При конструировании разработчики стремились минимизировать участие в передаче сообщений тех процессоров, которые выполняют пользовательские процессы. С этой целью введены специальные процессоры обработки сообщений, которые располагаются на плате узла и отвечают за отработку протокола обмена сообщениями. В результате основные процессоры узлов не отвлекаются от решения задачи. В

8

частности, не происходит достаточно дорогостоящего переключения с задачи на задачу, а решение прикладных задач идет параллельно с обменом сообщениями.

Собственно передача сообщений осуществляется системой маршрутизации, основанной на компонентах маршрутизатора узлов сети (Mesh Router Components, MRC). Для доступа MRC данного узла к его памяти в узле имеется еще специальный интерфейсный сетевой контроллер, который представляет собой заказную СБИС, обеспечивающую одновременную передачу в память узла и обратно, а также отслеживающую ошибки при передаче сообщений.

Модульное строение Intel Paragon способствует не только поддержанию масштабируемости. Оно позволяет рассчитывать на то, что данная архитектура послужит основой для новых компьютеров, базирующихся на иных микропроцессорах или использующих новые технологии обмена сообщениями. Масштабируемость опирается также на сбалансированность различных блоков суперкомпьютера на самых разных уровнях; в противном случае с ростом числа узлов где-либо в системе может появиться узкое место. Так, скорость и емкость памяти узлов балансируются с пропускной способностью и задержками межсоединения, а производительность процессоров внутри узлов — с пропускной способностью кэш-памяти и оперативной памяти и т. д.

До недавнего времени одним из самых быстродействующих компьютеров был Intel ASCI Red — детище ускоренной стратегической компьютерной инициативы ASCI (Accelerated Strategic Computing Initiative). В этой программе участвуют три крупнейшие национальные лаборатории США (Ливерморская, Лос-Аламосская и Sandia). Построенный по заказу Министерства энергетики США в 1997 г ., ASCI Red объединяет 9152 процессора Pentium Pro, имеет 600 Гбайт суммарной оперативной памяти и общую производительность 1800 млрд операций в секунду.

Суперкомпьютеры IBM

Когда на компьютерном рынке появились универсальные системы

9

смасштабируемой параллельной архитектурой SP (Scalable POWER parallel) корпорации IBM, они достаточно быстро завоевали популярность. Сегодня подобные системы работают в различных прикладных областях — таких, как вычислительная химия, анализ аварий, проектирование электронных схем, сейсмический анализ, моделирование водохранилищ, поддержка систем принятия решений, анализ данных и оперативная обработка транзакций. Успех систем SP определяется прежде всего их универсальностью, а также гибкостью архитектуры, базирующейся на модели распределенной памяти с передачей сообщений.

Вообще говоря, суперкомпьютер SP — это масштабируемая массивнопараллельная вычислительная система общего назначения, представляющая собой набор базовых станций RS/6000, соединенных высокопроизводительным коммутатором. Действительно, кому не известен, например, суперкомпьютер Deep Blue, который сумел обыграть в шахматы Гарри Каспарова? А ведь одна из его модификаций состоит из 32 узлов (IBM RS/6000 SP), базирующихся на 256 процессорах P2SC (Power Two Super Chip).

Семейство RS/6000 — это второе поколение компьютеров IBM, основанное на архитектуре с ограниченным набором команд (RISC), разработанной корпорацией в конце 70-х годов. Благодаря этой концепции для выполнения всей работы в компьютерной системе используется очень простой набор команд. Поскольку команды просты, они могут исполняться с очень высокой скоростью а также обеспечивают более эффективную реализацию исполняемой программы. Семейство RS/6000 основано на архитектуре POWER (архитектура

спроизводительностью, оптимизированной за счет применения модернизированного RISC) и ее производных — PowerPC, P2SC, POWER3 и т. д. Поскольку архитектура POWER сочетает концепции архитектуры RISC с некоторыми более традиционными концепциями, в результате получается система с оптимальной общей производительностью.

Система RS/6000 SP предоставляет мощность нескольких процессоров для

10