Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Видеонаблюдения.docx
Скачиваний:
47
Добавлен:
10.03.2016
Размер:
75.83 Кб
Скачать

Волокно со сглаженным импульсом

Одна из возможностей исключения модовой дисперсии - использование сглаженного профиля показателя преломления. В этом случае ядро состоит из большого числа концентрических колец. При удалении от центральной оси ядра показатель преломления каждого слоя снижается. Известно, что свет движется быстрее по среде с меньшим показателем преломления, поэтому, чем дальше расположена траектория светового луча от центра, тем быстрее он движется. Каждый слой ядра отражает свет. В отличие от ситуации со ступенчатым профилем показателя преломления, когда свет отражается от резкой границы между ядром и оптической оболочкой, здесь свет постоянно и более плавно отражается от каждого слоя ядра. Лучи, которые проходят более длинные дистанции, делают это большей частью по участкам с меньшим показателем преломления, двигаясь при этом быстрее. Свет, распространяющийся вдоль центральной оси, проходит наименьшую дистанцию, но с минимальной скоростью. В итоге все лучи достигают противоположного конца одновременно. Использование сглаженного профиля показателя преломления приводит к уменьшению дисперсии до 1нс/км.

Одномодовое оптоволокно

Другой путь уменьшения модовой дисперсии заключается в уменьшении диаметра ядра до тех пор, пока волокно не станет эффективно передавать только одну моду. Оно имеет чрезвычайно малый диаметр 5-10 микрон. Поскольку данное волокно переносит одну моду, модовая дисперсия в нем отсутствует. Одномодовое волокно позволяет достичь полосы пропускания от 50-100 ГГц на км. Особенностью распространения излучения в одномодовом режиме подчеркивает еще одно отличие одномодового волокна от многомодового. В одномодовом волокне излучение переносится не только внутри ядра, но и в оптической оболочке, в связи с этим, возникает дополнительные требования к переносу энергии в этом слое.

Обработка сигнала

Вследствие того что аналоговый сигнал практически не поддается обработки для его хранения необходимо большое количество магнитных носителей, а передавать его на большие расстояния без усилителей невозможна, возникла необходимость в оцифровки видеосигнала перед его обработкой.

Оцифрованный сигнал сжимается до 1000 крат, передается с помощью компьютерных сетей на любое расстояние, анализируется сложными программными и аппаратными модулями с целью выявления движения в кадре, возможность цифрового увеличения требуемого изображения, хранить оцифрованную информацию становится гораздо проще чем аналоговую (Время записи при отключенном детекторе движения, запись ВИ только на внутренний носитель 40GB, 32 ВК, 1к/с для каждой ВК, ч/б изображение, 768х288 15 – 18,75 часов).

Для оцифровки видеосигнала применяют устройства -фреймграбберы. В зависимости от целей производителя при создании граббера могут быть использованы различные технологии, поскольку создано большое количество схем, которыми она может комплектоваться. Контроллеры оцифровки бывают двух типов: предназначенные для промышленных и научных приложений или для работы в области мультимедиа. Грабберы, использующиеся в научных целях для контроля процесса производства, конвертируют видеосигнал с наиболее возможной точностью, внося минимальные искажения. Мультимедийные контроллеры сначала конвертируют сигнал, а затем в эстетических целях изменяют его так, чтобы картинка была более привлекательной. Из-за совершенно различных областей применения контроллеры двух разных типов не могут быть взаимозаменяемыми, хотя некоторые производители мультимедийных плат подают их как “универсальное” решение для всех видов приложений.

Мультимедийный контроллер компонуется таким набором микросхем, которые значительно изменяют видеоинформацию, тем самым внося большое количество артефактов и шума. Эти изменения, которые не присутствуют в изначальном сигнале, могут привести к ошибкам измерения на последующих стадиях обработки и анализа информации. При использовании таких контроллеров в приложениях, которые требуют высокой точности (технологические измерения, микроскопия, инспектирование целостности поверхностей), внесенные изменения могут привести к ложным результатам.