Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Естественно-научная картина мира / Содержание предмета КСЕ.doc
Скачиваний:
24
Добавлен:
10.03.2016
Размер:
209.41 Кб
Скачать

Тема 1-05-04. Геологическая эволюция

Земля как планета, ее отличия от других планет земной группы

Химический состав Земли

Магнитное поле Земли, его структура и роль для жизни на планете

Внутреннее строение Земли (ядро внутреннее и внешнее, мантия, земная кора), методы

исследования (сейсморазведка)

Формирование прото-Земли из планетезималей, её гравитационное сжатие, разогрев и начало дифференциации.

Эволюция земной коры: тектоника литосферных плит, её движущие силы

Возраст Земли, методы его оценки (радиометрия земных горных пород и метеоритов)

Возникновение океанов и атмосферы

Атмосфера Земли, ее структура (тропосфера, стратосфера, ионосфера) и химический состав

Тема 1-05-05. Происхождение жизни (эволюция и развитие живых систем)

Первичная атмосфера Земли

Абиогенный синтез

Предбиологический отбор

Коацерваты

Гетеротрофы

Автотрофы

Анаэробы

Аэробы

Прокариоты

Эукариоты

Голобиоз

Генобиоз

Исторические концепции происхождения жизни: креационизм, гипотеза панспермии, биохимическая эволюция, постоянное самозарождение, стационарное состояние

Тема 1-05-06. Эволюция живых систем

Эволюция, ее атрибуты: самопроизвольность, необратимость, направленность

Дарвинизм

Генофонд

Борьба за существование

Синтетическая теория эволюции, её основные положения:

- элементарная эволюционная структура - популяция

- элементарный наследственный материал - генофонд популяции

- элементарное явление эволюции - изменение генофонда популяции

- элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция, естественный отбор; их эволюционное значение

- единственный направляющий фактор эволюции - естественный отбор

Микроэволюция

Макроэволюция

Тема 1-05-07. История жизни на Земле и методы исследования эволюции (эволюция и развитие живых систем)

Понятия о геологических эрах и периодах

Связь границ между эрами с геологическими и палеонтологическими изменениями

Некоторые важнейшие ароморфозы: фотосинтез, эукариоты, многоклеточные, скелет

Основные таксономические группы растений и животных и последовательность их эволюции:

- рыбы

- земноводные (амфибии)

- пресмыкающиеся (рептилии)

- птицы

- млекопитающие

- голосеменные

- покрытосеменные

- цветковые

Прокариоты

Филогенез

Онтогенез

Адаптация

Ароморфоз

Понятие о флоре, фауне

Методы исследования эволюции: палеонтология (ископаемые переходные формы,

палеонтологические ряды, последовательность ископаемых форм)

Методы исследования эволюции: биогеография (сопоставление видового состава с историей территорий, островные формы, реликты)

Методы исследования эволюции: морфологические методы (установление связи между сходством строения и родством сравниваемых форм, рудиментарные органы, атавизмы)

Методы исследования эволюции: эмбриологические методы (зародышевое сходство, принцип рекапитуляции)

Методы исследования эволюции: генетические, экологические, методы биохимии и молекулярной биологии

Тема 1-05-08. Генетика и эволюция

Генетика, Ген, Аллель, Рецессивные и доминантные гены

Гене́тика (от греч. γενητως — происходящий от кого-то) — наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии.

Ген - структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойств.

Ген — материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения.В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.

Свойства генов:

дискретность — несмешиваемость генов;

стабильность — способность сохранять структуру;

лабильность — способность многократно мутировать;

множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

аллельность — в генотипе диплоидных организмов только две формы гена;

специфичность — каждый ген кодирует свой продукт;

плейотропия — множественный эффект гена;

экспрессивность — степень выраженности гена в признаке;

пенетрантность — частота проявления гена в фенотипе;

амплификация — увеличение количества копий гена.

АЛЛЕЛЬ (от греческого aa allelon - друг друга, взаимно), одна из возможных форм одного и того же гена. Аллели расположены в одинаковых участках (локусах) гомологичных (парных) хромосом; определяют варианты развития одного и того же признака, контролируемого данным геном. Новые аллели (их число практически неограниченно) возникают в результате изменения структуры гена - мутации. Свойство гена находиться в различных аллельных состояниях называется аллелизмом. В генетической литературе термин "аллель" употребляют как в мужском, так и в женском роде.

Одинаковые аллели являются гомозиготными, различные – гетерозиготными. Все гены могут быть как доминантными, так и кодоминантными или рецессивными.

Доминантные гены всегда проявляют признак, независимо от партнера; рецессивные гены являются скрытыми и проявляются только тогда, когда нет преобладающего над ними гена.

Гомозиготы, гетерозиготы

Гомозиго́та (от греч. «гомо» — равный, «зигота» — оплодотворенная яйцеклетка) — диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.

Гетерозиготными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

Хромосомы

Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования.

Каждая клетка тела человека содержит в точности 46 хромосом. Хромосомы всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. В большинстве случаев хромосомы достаточно разнятся, чтобы цитолог мог отличить пары хромосом (всего 23 пары). Следует отметить, что во всех соматических клетках (все клетки организма, кроме половых) хромосомы в парах всегда одинаковые по величине, форме, расположению центромер, в то время как половые хромосомы (23-я пара) у мужчин не одинаковые (ХУ), а у женщин одинаковые (ХХ).

Хромосомы в клетке под микроскопом можно увидеть только во время деления - митоза, во время стадии метафазы. Такие хромосомы называются метафазными. Когда клетка не делится хромосомы имеют вид тонких, темноокрашенных нитей, называемых хроматином.

Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. В процессе митоза (деления клетки) хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры - хромосомы.

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000.

Геном, Генотип, Фенотип

Гено́м — совокупность всех генов организма; его полный хромосомный набор.

Элементарными единицами наследственности служат гены, представляющие собой отрезки молекулы ДНК. Каждый ген определяет последовательность аминокислот в одном из белков, что, в конечном счете, приводит к реализации тех или иных признаков в онтогенезе особи.

Совокупность всех генов в диплоидном наборе хромосом ядра получила название генотипа. Термин "генотип" используется и в более узком смысле - для обозначения тех генов, наследование которых составляет предмет изучения.

Совокупность всех признаков и свойств организма называется фенотипом. Фенотип обусловлен генотипом, но внешняя среда, в которой реализуется генотип, может в значительной степени изменить его проявление. Даже организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования. Пределы, в которых в зависимости от условий среды изменяются фенотипические проявления генотипа, называются нормой реакции.

Свойства генетического материала: дискретность, непрерывность, линейность, относительная стабильность

Изменчивость: наследуемая (генотипическая, мутационная)

Изменчивость: ненаследуемая (фенотипическая, модификационная)

ИЗМЕНЧИВОСТЬ, способность живых организмов приобретать новые признаки и качества. Выражается в бесконечном разнообразии признаков и свойств у особей различной степени родства.Обычно выделяют два основных типа изменчивости.

Наследственная, или генотипическая, изменчивость обусловлена изменениями в генетическом материале (генотипе), которые передаются из поколения в поколение. Изменения в генотипе могут быть вызваны мутациями – изменениями в структуре генов и хромосом или изменениями числа хромосом в хромосомном наборе. При мутационной изменчивости возникают новые варианты (аллели) генов, причём мутации происходят сравнительно редко и внезапно. Другая форма генотипической изменчивости – т. н. комбинативная изменчивость, в основе которой лежит перекомбинация (перегруппировка) хромосом и их участков при половом размножении (в процессе мейоза и оплодотворения). В результате набор генов, а следовательно, и признаков у потомков всегда отличается от набора генов и признаков у родителей. Комбинативная изменчивость создаёт новые сочетания генов и обеспечивает как всё разнообразие организмов, так и неповторимую генетическую индивидуальность каждого из них.

Ненаследственная, или модификационная, изменчивость – способность организмов изменяться под действием различных факторов окружающей среды (температуры, влажности и т. п.). Этот тип изменчивости не связан с изменениями в генотипе и не наследуется. Однако пределы модификационной изменчивости любого признака – т. н. норма реакции – задаются генотипом. Её особенность – обратимость: обычно модификации сразу или постепенно исчезают при устранении вызвавшего их фактора.

Наряду с наследственностью изменчивость – фундаментальное свойство всех живых существ, один из факторов эволюции органического мира. Различные способы целенаправленного использования изменчивости (разные ти-пы скрещиваний, искусственные мутации и др.) лежат в основе создания новых пород домашних животных и сортов культурных растений.

Мутации передаются по наследству, чем обусловлена их роль в эволюции: только наследственные изменения могут стать достоянием последующих поколений при условии успешного размножения и выживания особей с этими мутациями.

Мутации вызываются различными внешними и внутренними факторами. Ультрафиолетовые лучи, колебания температуры, изменение химических реакций в клетке в связи с ее старением, действие различных химических веществ могут привести к изменениям структуры ДНК и целых хромосом.

Возникают мутации внезапно, скачкообразно, у отдельных особей вида и в большинстве случаев вредны для организма, так как расшатывают исторически сложившийся генотип. Одни и те же мутации могут возникать повторно.

Мутации ненаправленны: мутировать может любой ген, вызывая изменения как незначительных, так и жизненно важных признаков. При этом один и тот же фактор, например рентгеновское излучение, действуя на клетки, может вызвать самые разные мутации, которые трудно предвидеть.

Свойства мутаций: случайность, внезапность, ненаправленнность, неоднократность и наследуемость

6. Биосфера и человек