Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 4.doc
Скачиваний:
31
Добавлен:
07.03.2016
Размер:
131.58 Кб
Скачать

Лекция 4 Газы и неметаллические включения в стали

4.1. Кислород в стали

4.2. Водород в стали

4.3. Азот в стали

4.4. Неметаллические включения

В любой стали в некоторых количествах содержатся газы: кислород, водород, азот. Газы содержатся в металлах в виде газовых пузырей, соединений (оксидов, гидридов, нитридов) и жидких или твердых растворов, т.е. в виде атомов или ионов, распределенных между атомами и ионами жидкого металла или внедренных в кристаллическую решетку металла. Газы (даже при содержании их в сотых и тысячных долях процента) оказывают существенное влияние на свойства металла, поэтому вопросам удаления газов из металла всегда уделяют особое внимание.

Растворимость газов в стали в сильной степени зависит от температуры (рис. 4.1).

Рис. 4.1. Изменение растворимости в стали кислорода (а), водорода (6) и азота (в)

4.1. Кислород в стали

Атмосфера сталеплавильных агрегатов—окислительная. При этом какое-то количество кислорода всегда переходит из газовой фазы в металл. Источником кислорода могут быть также добавочные материалы, содержащие оксиды железа (например, ржавчина на поверхности металлического лома).

Растворимость кислорода в железе, находящемся под шлаком, с повышением температуры растет. Но если металл содержит примеси, сродство которых к кислороду выше, чем у железа, то происходит окисление этих примесей и концентрация кислорода в металле уменьшается. Если эти примеси вводят в ванну специально для того, чтобы уменьшить содержание кислорода, то их называют раскислителями. В качестве таких элементов-раскислителей используют марганец, кремний, алюминий, кальций, редкоземельные элементы.

Раскислителем является также углерод (рис. 4.2). Кислород, растворенный в металле, реагирует с углеродом, и в результате реакции происходит кипение металла .Если уменьшить давление (например, при помещении ковша с жидким металлом в вакуумную камеру), то равновесие этой реакции сместится вправо, металл, содержащий углерод, вскипит, содержание кислорода уменьшится.

Рис. 4.2. Влияние углерода на содержание кислорода, растворенного в стали:

I — равновесная кривая [С] • [О]; ІІобласть концентраций фактически наблюдаемых при кипении металла

4.2. Водород в стали

Атмосфера почти любого сталеплавильного агрегата содержит какое-то количество водорода или паров Н2О. Некоторое количество влаги может попасть вместе с шихтой и добавочными материалами. Из атмосферы агрегата водород переходит в металл по реакции

Растворимость водорода в твердом металле для различных модификаций железа различна (рис. 4.1, б). Скачкообразное изменение растворимости при переходе металла из одного аллотропического состояния в другое вызывает интенсивное выделение из него водорода, сплошность металла нарушается, образуются такие дефекты, например, как флокены (особой формы газовые пузыри). Оставшийся в твердом растворе водород искажает кристаллическую решетку металла, в результате чего его хрупкость возрастает, а пластичность уменьшается, качество металла ухудшается. Для снижения содержания водорода в металле и ослабления его вредного влияния на качество применяют следующие методы:

Обработка металла вакуумом. При помещении металла в вакуумную камеру давление водорода в газовой фазе уменьшается, и он начинает удаляться из металла. Вакуум является очень эффективным средством уменьшения содержания водорода в металле.

Организация кипения ванны. При протекании реакций окисления углерода образуется оксид углерода. Пузырьки СО, проходя через ванну, создают эффект кипения. Парциальное давление водорода в пузырьке, состоящем из СО, равно нулю, поэтому пузырьки СО по отношению к водороду (а также к азоту) являются как бы маленькими вакуумными камерами, и эти газы уходят из металла в пузырьки СО и вместе с ним покидают ванну. Таким образом, при кипении металл очищается от растворенных в нем газов.

Продувка инертными газами. При продувке металла инертными газами (обычно для этой цели используется самый дешевый и доступный инертный газ — аргон) парциальное давление водорода в пузырьках равно нулю, поэтому они очищают металл от водорода. Одновременно с удалением газов продувка аргоном обеспечивает перемешивание металла, выравнивание его состава, температуры и т.д.

Выдержка закристаллизовавшегося мегалла при повышенных температурах. Размеры атомов водорода очень малы, они свободно диффундируют через кристаллическую решетку закристаллизовавшейся стали, особенно при повышенных температурах. Из образцов сравнительно небольшого сечения, охлаждаемых медленно в печи или на воздухе, растворенный при высоких температурах водород удаляется почти полностью. Принято содержание водорода в металле выражать в кубических сантиметрах на 100 г массы пробы. Обычно содержание водорода в жидкой стали в зависимости от метода работы колеблется от 4 до 10 см3 на 100 г металла. Чем больше масса изделия, тем затруднительнее организовать удаление водорода из затвердевшего металла. Поэтому все слитки качественного металла (или заготовки из них) длительное время выдерживают при относительно высоких температурах, для чего в цехах существуют специальные пролеты. Для очень больших слитков (30 т), такой способ уже не дает должного эффекта, и такие слитки отливают под вакуумом.

Добавки гидридообразующих элементов. Некоторые металлы (например, редкоземельные) способны вступать с водородом во взаимодействие, образуя гидриды. При введении этих элементов в металл развитие таких дефектов, как флокены, уменьшается.

Наложение электрического поля. Водород, растворенный в жидком металле, находится там в виде катионаа в шлаке—в видеПри наложении достаточно сильного электрического поля на катоде выделяется атомарный водород атомы которого ассоциируются в молекулы .На аноде из шлака выделяются парыи В промышленных условиях этот способ удаления водорода применения не нашел.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]