Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

kce_p1398

.pdf
Скачиваний:
33
Добавлен:
07.03.2016
Размер:
1.03 Mб
Скачать

способностей. Однако, проблема соответствия или несоответствия явлений и процессов динамическим ториям оказалась намного сложнее, чем оценка достаточности или недостаточности наших познавательных способностей.

Рассмотрим следующий наглядный пример. В XIX веке было обещано вознаграждение тому, кто первым сможет ответить, стабильна ли наша Солнечная система. Вопрос о стабильности можно переформулировать: если бы вы могли оказаться в далеком будущем, увидели бы вы все планеты точно там, где они находятся сегодня, так же расположенными и движущимися с теми же скоростями? На этот вопрос нельзя ответить однозначно, поскольку в Солнечной системе восемь планет, не считая их спутников, астероидов и комет, у которых есть свои собственные маленькие спутники с неизвестными нам орбитами. Хотя Солнечная система и приводится как показательный пример часового механизма Вселенной и принципа детерминизма, но ее будущее, на сегодняшний день, нельзя точно предсказать. Пример Солнечной системы показывает, что даже для систем, казалось бы полностью детерминистических в классическом механистическом смысле, возможность делать точные предсказания неочевидна.

Начиная с XVIII века, рядом ученых разрабатывалась программа исследований, по окончательное оформление которой в теорию получило название – молекулярнокинетическая теория газов. В рамках этой теории устанавливалась связь макроскопических параметров в газе – температуры и давления со скоростями движения микроскопических тел (молекул или атомов). Движение молекул рассчитывалось по уравнениям ньютоновской механики, в рамках которой, молекулы представлялись как материальные точки. В первоначальной версии, т.е. в элементарной молекулярнокинетической теории, делалось грубое предположение, что все молекулы в замкнутом сосуде имеют одинаковые скорости. Это явное противоречие с реальностью было устранено Дж. Максвеллом, который в 1866 году вывел закон распределения молекул по скоростям, и такое распределение молекул позволяло удовлетворить закон сохранения энергии при отдельных соударениях частиц. Таким образом, Максвелл охарактеризовал состояние системы молекул не полным набором значений координат и скоростей всех частиц (что, вообще, практически сделать невозможно), а вероятностью того, что эти значения лежат внутри определенных интервалов. Так в физику впервые, хотя и неявно, пришли понятия теории вероятности, приведшие к чисто статистическим закономерностям.

Дальнейшее развитие естествознания показало, что большая часть, происходящих в природе процессов, не может быть описана теориями динамического типа, а описывается теориями статистического типа.

Статистические законы – это форма причинной связи, при которой данное (начальное) состояние системы определяет все ее последующие состояния не однозначно, а с определенной вероятностью.

Статистические законы позволяют определить лишь спектр возможных значений параметров системы и вероятность того, что этот или иной параметр системы примет данное конкретное значение, а также однозначно рассчитать средние значения параметров системы.

Соответствие динамических и статистических теорий.

История развития науки показывает, как первоначально возникшие динамические теории сменяются статистическими, описывающими тот же круг явлений в макроскопических системах, в которых не рассматривают поведение отдельных элементов этой системы (например, единичной молекулы в газе) и изменения их характеристик, а оперируют величинами, характеризующими систему в целом, т.е. макропараметрами (например, давление в газе, плотность газа и т.д.). таким образом, можно сказать, что динамические теории строятся на основании усреднения законов поведения громадного числа частиц в

31

равновесных (или слаборавновесных) условиях, и не учитывают вариации, полученных на основании этих теорий, результатов, которые бы изменялись под влиянием на систему окружающей ее среды. В реальных процессах всегда происходят неизбежные отклонения

флуктуации. Флуктуации – это случайные отклонения параметров системы (или всей системы) от средних значений параметров (или среднего, т.е. наиболее вероятного состояния системы).

Когда флуктуации значительны, в сложных системах с большим числом элементов, которые к тому же зависят от постоянно меняющихся внешних условий, статистические законы глубже и точнее описывают исследуемые процессы.

Главное отличие статистических законов от динамических – в учете случайного (флуктуаций).

В современном естествознании законы динамического типа сочетаются с законами статистического типа. Законы динамического типа используются для систем и процессов, в которых допустимо пренебречь влиянием реально существующих случайных факторов. Если же этого сделать нельзя, то применяют статистические теории, которые дают более глубокое, детальное и точное описание реальности.

Резюмируем все вышесказанное.

Состояние системы в естественных науках может задаваться:

-значениями измеряемых величин, характеризующих эту систему, на данный момент времени

-вероятностями, с которыми та или иная величина, характеризующая систему, принимает заданные значения.

Динамические научные теории:

-описывают состояние системы значениями измеряемых величин, характеризующих систему

-позволяют точно рассчитать и однозначно предсказать значения физических величин, характеризующих изучаемую систему, на данный момент времени (на любой момент времени)

-не учитывают и не позволяют описывать флуктуации – случайные отклонения системы от наивероятнейшего состояния

-не используют аппарат теории вероятности.

Статистические научные теории:

-позволяют рассчитывать и предсказывать лишь вероятность того, что величина, характеризующая систему, примет то или иное значение

-описывают состояние системы на языке вероятностей, с которыми та или иная величина, характеризующая систему, принимает заданные значения

-позволяют точно и однозначно рассчитать средние значения физических величин, характеризующих изучаемую систему

-позволяют рассчитать характерную величину флуктуаций случайных отклонений системы от ее наивероятнейшего состояния

-учитывают случайные отклонения от нормы

-описывают вероятное поведение систем, состоящих из огромного числа элементов.

Соответствие между динамическими и статистическими законами:

-динамической теории соответствует более точный статистический аналог, который полнее и глубже описывает реальность

-статистическая теория всегда описывает более широкий класс явлений, чем ее динамический аналог

-статистические законы более полно и глубоко отражают объективные связи в природе, т.к они учитывают реально существующую в мире случайность

-классическая механика Ньютона (динамическая теория) является приближением квантовой механики (статистической теории) при описании движения макрообъектов

32

- все фундаментальные статистические теории содержат в качестве своего приближения соответствующие динамические теории при условии, что можно пренебречь случайностью.

Динамическими теориями являются:

-механика

-электродинамика

-термодинамика

-теория относительности

Статистическими теориями являются:

-молекулярно-кинетическая теория газов

-квантовая механика, другие квантовые теории

-эволюционная теория Дарвина

Основные понятия статистических теорий:

-случайность (непредсказуемость)

-вероятность (числовая мера случайности)

-среднее значение величины

-флуктуация – случайное отклонение системы от среднего (наиболее вероятного состояния).

4.16 Концепции квантовой механики

Квантовая механика изучает законы поведения микрочастиц (атомов, элементарных частиц и т.д.)

М.Планк (изучая тепловое движение тел, 1900г.): атомы излучающего тела отдают электромагнитную энергию порциями (квантами), причем энергия одного кванта E

пропорциональна частоте излучения : E h ( h 6,63 10 34 Дж с – постоянная Планка).

А.Эйнштейн (изучая явления фотоэффекта, 1905г): свет не только излучается, но распространяется и поглощается квантами (кванты света – фотоны, существуют только в движении).

А.Эйнштейн (1909г): свет одновременно обладает и корпускулярными (квантовыми) и волновыми (электромагнитными) свойствами. Т.е. свету присущ корпускулярно-волновой дуализм (двойственность).

Л де Бройль (1924г) сформулировал универсальный корпускулярно-волновой дуализм:

каждый микрообъект проявляет себя одновременно и как частица (имеющая импульс и энергию) и как волна (с частотой и длиной волны).

Де Бройлю удалось сформулировать соотношение, связывающее импульс квантовой

частицы

p mV с длиной волны, которая ее описывает ( p

h

или

h

 

h

).

 

p

mV

 

 

 

 

 

Экспериментальное подтверждение наличия волновых свойств микрочастиц (К.Дэвиссон, Л.Джермер, 1927г) привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако, волновые свойства макротел (и в частности, человеческого тела) не могут быть экспериментально обнаружены. Это объясняется тем, что длина волны (обратно пропорциональная массе объекта, согласно отношению Де Бройля) при большой массе столь мала, что ее обнаружение лежит за пределами возможности экспериментальной техники.

Мысленный эксперимент «микроскоп Гейзенберга»

33

В классической физике, построенной на ньютоновских принципах и применяемой к объектам макромира, принимается, что процесс измерения не влияет на измеряемые свойства объекта. Однако, так ли обстоит дело в микромире, позволяет понять следующий мысленный эксперимент: чтобы точно определить положение электрона в пространстве, необходимо направить на него электромагнитную волну, «осветить» его и посмотреть в некий сверхсильный «микроскоп». Но при этом сам микрообъект (например, электрон), являющийся объектом излучения, в результате взаимодействия, с направленным на него другим микрообъектом (квантом света – фотоном), изменит свое положение в пространстве. Таким образом, сам факт замера приводит к изменению положения измеряемого объекта, и неточность измерения обуславливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора.

Этот мысленный эксперимент, отражающий тот факт, что измерение невозможно без взаимодействия, взаимодействие – без воздействия на измеряемый объект и, как следствие, искажение результатов измерения, позволил В.Гейзенбергу (1927г)

сформулировать принцип неопределенности (соотношение неопределенности):x p h ( x V mh т.к. p mV ) здесь x - неопределенность (погрешность

измерения) пространственной координаты микрочастицы, p (или V ) –

неопределенность импульса (или скорости) частицы, m - масса частицы, h - постоянная Планка.

Принцип неопределенностей касается и других характеристик микрочастиц. Еще одна такая взаимосвязанная пара – это энергия и время протекании квантовых процессов. Принцип Гейзенберга играет в квантовой механике ключевую роль, хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам макромира. Принцип неопределенности говорит о том, что если бы нам удалось абсолютно точно установить местоположение квантовой частицы, о ее скорости мы бы не имели ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы не имели понятия, где она находится.

Однако, принцип неопределенности не утверждает, что у квантовых частиц отсутствуют определенные координаты и скорости (или что эти величины абсолютно непознаваемы) – он утверждает лишь, что мы не в состоянии достоверно узнать и то и другое одновременно.

Принцип дополнительности Бора (1927г)

Соотношение неопределенностей является конкретным выражением более общего положения – принципа дополнительности Бора.

Квантовомеханический принцип дополнительности:

результаты, полученные в разных экспериментах, не могут быть связаны в единую картину, но они необходимы для исчерпывающего описания квантового объекта.

В дальнейшем Бор придал принципу дополнительности широкий философский смысл: полное понимание свойств любого объекта исследования требует дополняющих взглядов на него с разных, несовместимых между собой, точек зрения.

Статистический характер квантового описания природы.

Из-за принципа неопределенностей, описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми привыкли описывать механическое движение, в квантовой механике объекты описываются, так называемой, волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрѐдингера, которое и говорит нам, как изменяется со временем состояние квантовой системы.

34

Принципиальные отличия квантовой механики от классической механики заключаются прежде всего в том, что:

-ее законы являются статистическими по своей природе

-ее предсказания имеют вероятностный характер

Резюмируем все вышесказанное:

-в классической механике можно точно вычислить значения координат и скорости объекта

-в квантовой механике можно вычислить лишь вероятность того или иного значения координат, скорости и энергии частицы в заданный момент времени

-состояние системы в классической механике задается координатами и скоростями всех материальных точек системы

-состояние объекта (или системы объектов) в квантовой механике задается волновой функцией объекта (или системы объектов)

-корпускулярные свойства света легче наблюдать, когда его длина волны достаточно мала

-волновые свойства человеческого тела затруднительно наблюдать ввиду его большой массы покоя

-если в данном квантовом состоянии физические величина Х не имеет определенного значения, это означает, что можно предсказать лишь вероятность того или иного результата измерения Х

-при взаимодействии макроскопического измерительного прибора с квантовым объектом, в процессе измерения изменяется состояние измеряемого квантового объекта.

Принцип дополнительности Бора (в узком квантовомеханическом смысле):

-результаты, полученные в разных экспериментах, не могут быть связаны в единую картину, но они необходимы для исчерпывающего описания квантового объекта

-все величины, характеризующие объект, можно разделить на такие группы, что измерение величин из одной группы делает невозможным или неточным измерение соответствующих величин из другой группы

-дополнительные физические величины всегда связаны тем или иным соотношением неопределенности

-дополнительными величинами являются: координаты и импульс; энергия и время

-при точном измерении физической величины невозможно измерить точно дополнительную ей величину (это следует из принципа неопределенности)

-принцип дополнительности отражает невозможность невозмущенных измерений (это следует из принципа неопределенности).

Принцип дополнительности Бора (в широком философском смысле):

-полное понимание свойств любого объекта исследования требует взгляда на него с разных, несовместимых, дополняющих друг друга точек зрения

-исследование реальности всегда сопровождается ее изменением, а результат исследования зависит от того как оно выполняется

-значение принципа дополнительности состоит в том, что он подчеркивает равноценность разных, в том числе несовместимых точек зрения

-однозначно, одним методом невозможно описать явление, объект или субъект – необходимо привлечь дополнительные представления

-никакое отдельное знание о предмете не может быть самодостаточным, требуется дополнение в лице других наук.

Примеры проявления принципа дополнительности (в широком смысле):

-культура как цельность ее научной и гуманитарно-художественной составляющей

-человек как цельность его биологического и социального начал

-естественнонаучная и гуманитарная культуры – это два, взаимодополняющих друг друга, способа постижения мира человека

35

-взаимоотношения между объектом исследования и исследователем являются одним из примеров принципа дополнительности

-биологическая и социальная сущности в человеке – это две, дополняющие друг друга, характеристики

-соотношения между хаосом и порядком в процессе самоорганизации материи являются одним из примеров действия принципа дополнительности

-анализ и синтез – два метода научного познания, которые связаны друг с другом по принципу дополнительности.

4.17 Принцип возрастания энтропии

Энергия (общая мера различных форм движения и взаимодействия всех видов материи): энергия тела(системы)-это способность тела(системы) совершать работу.

Различные виды энергии:

-механическая (энергия движения макроскопических тел)

-электрическая(энергия возникшая в результате движения электронов между атомами) -химическая(энергия, вызываемая движением электронов внутри атомов)

-ядерная или атомная (энергия обусловленная взаимодействиями внутри атомов и ядер атомов)

-тепловая(энергия беспорядочного движения молекул и атомов)

Изолированные (закрытые) системы - это системы, которые не могут обмениваться с окружающей средой энергией и веществом. Если могут-то это открытые системы. Необратимые процессы - это процессы, в которых невозможно вернуть систему в исходное состояние без вмешательства извне, т.е. такие процессы могут самопроизвольно протекать в одном определенном направлении.

Вечный двигатель первого рода - воображаемая машина, которая будучи раз запущена в ход, совершала бы работу неограниченно долгое время, не заимствуя энергию извне. Вечный двигатель второго рода - воображаемая машина, которая целиком превращала бы в работу теплоту, извлекаемую ею из окружающих тел.

Первое начало термодинамики: теплота сообщаемая телу, расходуется на увеличение его внутренний энергии и на совершение этим телом работы.

Закон сохранения энергии (обобщающий первое начало термодинамики):суммарная энергия изолированной системы не изменяется. Из этого закона следует невозможность создания вечного двигателя первого рода.

Второе начало термодинамики. Этот закон термодинамики имеет как минимум три равноправные формулировки. Все они логически эквиваленты между собой и из любой формулировки второго начала математически выводятся две другие.

Первая формулировка 2 начала: Невозможна самопроизвольная передача тепла от холодного тела к теплому. Это же можно выразить следующим образом: теплообмен направлен от горячего к холодному. Этот закон говорит о направленности физических процессов.

Вторая формулировка 2 начала: Никакой двигатель не может преобразовать теплоту в работу со стопроцентной эффективностью. Эту же формулировку можно трактовать как невозможность создания вечного двигателя второго рода.

Прежде чем приведем третью формулировку, введем понятие энтропии.

Энтропия:

36

1) Энтропия-это показатель неупорядоченности системы. Чем выше энтропия, тем хаотичнее движении материальных частиц, составляющих систему. Соответственно, повышая упорядоченность системы, энтропия уменьшается.

2) Энтропия-это мера некачественности энергии. Чем больше энтропия системы (т.е. система хаотичней), тем меньше полезной работы та может произвести при заданном запасе энергии, т.к. энтропию можно рассматривать и как количественную меру той теплоты, которая не переходит в работу.

3) Энтропия-это мера необратимого рассеяния энергии.

4)Энтропия является мерой отсутствия порядка в системе, мерой ее бесструктурности, мерой отсутствия информации, необходимой для управления системой.

Третья формулировка 2 начала: В изолированной системе энтропия не может убывать. Это формулировка предполагает, что в закрытых системах энтропия может только возрастать и достигнув своего максимума в состоянии теплового равновесия системы, далее она не изменяется. Эта формулировка (энтропия возрастает) предполагает, что в закрытых системах предоставленных самим себе, первоначальный порядок спонтанно переходит в беспорядок и приводит к разрушению первоначальных структур.

Второе начало термодинамики называют также - законом рассеяния энергии.

Второе начало термодинамики (ее 3 формулировка) неприменима к открытым системам. В открытых системах энтропия может, как увеличиваться - при подводе тепла извне, так и уменьшаться - при теплоотдаче в окружающую среду.

Состояние живых систем (в частности организм) в любой момент времени характерно тем, что элементы системы постоянно разрушаются и строятся заново. Этот процесс называется биологическим обновлением. Для обновления элементов в живых организмах требуется постоянный приток извне веществ и энергии, а также отвод во внешнюю среду тепла и продуктов распада. Так как живые системы являются открытыми системами , то такой взаимообмен с окружающей средой происходит и поэтому живые организмы в процессе своего развития, непрерывно, за счет обмена веществ, создают из менее упорядоченных систем более упорядоченные и их энтропия уменьшается. В течении времени жизни организма его элементы постепенно подвергаются распаду и переходя к концу жизни энтропия организма возрастает.

Резюмируем вышесказанное:

1.Энтропия - физическая величина, поскольку она характеризует превращение энергии. 2.Энтропия может служить:

-мерой беспорядка и бесструктурности -мерой некачественности энергии системы -индикатором направления времени

-количественной мерой той теплоты, которая не переходит в работу.

3.Возможные формулировки второго начала термодинамики:

-с течением времени структуры в замкнутой системе разрушаются -с течением времени энтропия замкнутой системы возрастает

-теплота самопроизвольно переходит только от горячего тела к холодному -это закон рассеяния энергии

4.Закон роста энтропии применим лишь к замкнутым системам, и не противоречит выводам биологии (об уменьшении энтропии), имеющим дело с открытыми системами

5.В процессе развития организма (являющимся открытой системой), энтропия может и увеличиваться, и уменьшаться

6. Энтропия незамкнутой системы (открытой системы) может, как возрастать, так и убывать

7.Качество любой формы энергии определяется легкостью ее превращения в другие формы энергии

8.Самая некачественная форма энергии это тепловая при низкой температуре

37

9.При воздействии на систему извне (т.е. система открыта), можно повысить совершенство системы, степень ее упорядоченности. При этом энтропия системы уменьшается

10.Выброс энергии с Земли в космическое пространство всегда был гораздо меньше, чем поступление ее от Солнца плюс производство на Земле.

4.18Закономерности саморегуляции. Принципы

универсального эволюционизма

Синергетика:

-область научных исследований коллективного поведения частей сложных систем, связанных с неустойчивостями и касающихся процессов самоорганизаций.

-является теорией самоорганизации в природных и социальных системах.

-междисциплинарная универсальная теория самоорганизации процессов самой разной природы. Возникла на стыке физики, биологии и других наук.

Самоорганизация:

-спонтанный переход от неупорядоченного состояния к упорядоченному за счет совместного, кооперативного действия многих подсистем.

-необратимый процесс спонтанного возникновения порядка и организации из хаоса и беспорядка в открытых неравновесных системах.

-при самоорганизации энтропия системы уменьшается за счет обмена энергией и веществом с окружающей средой.

Объектами исследования синергетики могут быть системы, которые удовлетворяют следующим необходимым условиям, т.е. системы должны быть:

-открытыми

-нелинейными

-диссипативными

-неравновесными

Нелинейные системы – это системы , для которых даже малые изменения в исходном состоянии приводят к быстронарастающему отклонению ее от исходного состояния. В этом проявляется неустойчивость системы.

Диссипативные системы – способные рассеивать (перераспределять) энергию. К диссипативным системам относится любой живой организм.

Неравновесные системы – системы в которых присутствуют неоднородность в пространстве того или иного макропараметра (например, наличие в системе перепадов температур, давления, концентрации химических веществ и др.) Признаками неравновесности системы является перетекание в ней потоков веществ, энергии и др. Большинство реально существующих систем – это открытые неравновесные системы. Процесс самоорганизации характеризуется переходом системы из одного состояния в принципиально новые более упорядоченные состояния. Для возникновения упорядочения в системах необходим приток энергии и ее диссипация в системе. За счет энергии поступившей извне возникает некая обобщенная движущая сила (например, перепад давления, перепад концентраций вещества и т.п.) Под действием этой силы система из равновесного или слаборавновесного состояния постепенно переходит к неравновесному состоянию, система становится нелинейной и возникшие флуктуации начинают играть все более заметную роль. В конце концов, наступает момент времени – точка бифуркации, когда система становится перед выбором одного из нескольких принципиально возможных состояний. Этот выбор возможных состояний носит непрогнозированный вероятностный характер.

После осуществления выбора, система становится более упорядоченной, по сравнению с исходной, а ее поведение прогнозируемой . Если движущая сила будет увеличиваться, то система может придти к новой точке бифуркации и т.д.

38

Точка бифуркации (точка ветвления) – критическое состояние системы, при котором она становится неустойчивой относительно флуктуаций и возникает неопределенность: станет ли состояние системы хаотическим или она перейдет на новый более высокий уровень упорядоченности.

В масштабе Вселенной самоорганизация проявляется в эволюции космологических сильно неравновесных систем. Процессы самоорганизации имеют место и при формировании геологического облика Земли (геологическая эволюция).

Живой организм, биологический вид, популяция, экосистема и биосфера

представляют собой открытые системы, далекие от равновесия, которые характеризуются определенной упорядоченностью.

Кпроцессам самоорганизации относятся: - кооперативное поведение насекомых

- эффекты самодостраивания (регенерация живых тканей) - интуиция в процессе мышления - вся жизнь на Земле, а также ее возникновение.

Примерами самоорганизации могут служить:

- ячейки Бенара : возникновение упорядоченности в виде конвективных ячеек в форме цилиндрических валов или правильных шестигранных структур в слое вязкой жидкости с вертикальным градиентом температуры, т.е. равномерно подогреваемых снизу.

- реакция Белоусова-Жаботинского – класс химических реакций, протекающих в колебательном режиме, при котором некоторые параметры реакции (цвет, концентрация компонентов, температура и др.) изменяются периодически, образуя сложную пространственно-временную структуру реакционной среды.

- лазер (переход лазера в режим генерации) : при накачке энергии лазер работает как обычная лампа, причем микроскопические ячейки, подобно антеннам, излучают свет независимо друг от друга. При определенном значении энергии антенны начинают работать самостоятельно в одной фазе, что приводит к мощному излучению. Таким образом, происходит скачкообразный переход к новому качественному состоянию.

- возникновение кристаллов в достаточно концентрированном растворе

Пороговый характер (внезапность) явлений самоорганизации:

Кзакономерностям самоорганизации в любой системе относится внезапность, быстрота формирования диссипативной структуры,т.к.развитие кризисной ситуации достигается быстрым переходом диссипативной системы на новый более высокий уровень упорядоченности.

При самоорганизации происходит ; - синхронизация частей системы - понижение энтропии системы

- повышение энтропии окружающей систему среды

Универсальный эволюционизм, его причины (положения):

- все существует в развитии -развитие есть чередование медленных количественных и быстрых качественных изменений (бифуркаций)

- законы природы как принцип отбора допустимых состояний из всех мыслимых - фундаментальная и неустранимая роль случайности и неопределенности

- непредсказуемость пути выхода из точки бифуркации : прошлое влияет на настоящее и будущее, но не предопределяет его - устойчивость и надежность природных систем, как результат их постоянного обновления

- эволюция Вселенной и ее структур обусловлены ее собственными законами, действующими объективно и познаваемыми рационально - Вселенная существует и может существовать лишь в развитии

Приведем несколько положений, следующих из вышеизложенного :

39

-общие закономерности самоорганизации изучают синергетика, неравновесная термодинамика

-примерами самоорганизации систем могут служить:

а) возникновение кристаллов б) генерация лазерного излучения в) возникновение ячеек Бенара

г) колебательные реакции Белоусова-Жаботинского д) популяции е) планета Земля ( геологическая эволюция)

- в точке бифуркации:

а) система пребывает в критическом состоянии, переход из которого осуществляется скачком

б) неоднозначен выбор пути дальнейшего развития - поведение системы вблизи точки бифуркации:

а) по мере приближения к точке бифуркации флуктуации в системе нарастают б) элементы возникающие в точке бифуркации упорядоченной структуры

формируются из флуктуаций, случайно возникших до точки бифуркации

-состояние, когда человек тяжело болен и имеются варианты развития: либо выздороветь либо умереть, либо болезнь примет хроническую форму – и есть точка бифуркации

-в ходе самоорганизации системы:

а) в системе происходит превращения хаоса в порядок и энтропия системы уменьшается

б) в окружающей среде системы увеличивается беспорядок и ее энтропия возрастает

5.19 Космология (мегамир)

Космология – это наука о Вселенной в целом, ее свойствах, структуре, эволюции. Космологические представления Аристотеля:

-Вселенная ограничена сферой на которой находятся звезды. За этой сферой ничего нет.

Вцентре Вселенной – земля.

-шарообразная Вселенная неоднородна: в подлунном мире все состоит из земли, воды, воздуха, огня; в надлунном мире вплоть до ограничивающей сферы все заполнено гипотетическим эфиром.

Геоцентрическая система Птолимея ( развитие идей Аристотеля):

Вцентре Вселенной сферическая Земля, а вокруг нее обращаются Луна, Солнце, планеты по сложной системе окружностей – «эпициклов», «деферентов», и, наконец, все это было заключено в сферу неподвижных звезд.

Гелиоцентрическая система Коперника: в центре мира неподвижное Солнце, вокруг которого обращаются планеты (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутоний)

Ньютоновская космология (в ее основе лежит система Коперника) : Вселенная – безграничная, бесконечная, однородная, неизменная.

Вселенная Эйнштейна: однородна, изотропна и равномерно заполнена материей, преимущественно в форме вещества.

Космологическая модель Фридмана: основана на уравнениях, выведенных из общей теории относительности и описывает нестационарную эволюцию Вселенной.

Выводы из модели Фридмана указывали на то, что материя в однородной и изотропной Вселенной не может находиться в покое – Вселенная должна либо сжиматься, либо расширяться. Если плотность материи меньше некоторого критического значения, то гравитационное притяжение будет слишком мало, чтобы остановить расширение. Если же плотность материи больше критической, то в какой-то момент в будущем из-за

40