Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зачет по гистологии колок 5 .docx
Скачиваний:
170
Добавлен:
07.03.2016
Размер:
104.08 Кб
Скачать

18. Закономерности дегенерации и адаптации сетчатки при ретинопатиях. Воздействие света и радиации.

Радиация в широком смысле слова предполагает излучение различных видов - световое, ультрафиолетовое, тепловое, микроволновое и другие, хотя традиционно это понятие связывают с ионизирующим излучением. Ионизирующая и неионизирующая радиация, как повреждающие орган зрения факторы широко известны благодаря их катарактогенным эффектам. Распространенность радиационных изменений зрительного анализатора связана со следующими сферами человеческой деятельности.

I. Медицина

  • Онкорадиология: облучение опухолей окологлазничной локализации вызывает ретиниты, невриты зрительного нерва, в 20% случаев страдает зрительная функция, при дозах свыше 50 Гр (редкоионизирующее излучение) слепота с 6-го месяца, дозы плотноионизирующих излучений (нейтроны) на порядок ниже.

  • Физиотерапия: микроволновые повреждения сетчатки.

  • Офтальмология: офтальмоскопы, операционные микроскопы, лазер - световой фактор

II. Аварийные ситуации в атомной энергетике, производственные вредности

  • Ионизирующие излучения: в сфере деятельности предельно допустимых доз зрительные нарушения в 2-3 раза чаще, многочисленные случаи аварийных облучений (Чернобыльская АЭС) - поражение сетчатки, стекловидного тела, глаукомы.

  • Микроволны: радарные ожоги сетчатки

  • Свет: астрономия (Г.Галилей), киносъемки, электросварка, алмазодобывающая промышленность - ожоги сетчатки

Закономерно наиболее чувствительным ко всем видам излучений и комбинированным воздействиям является фотосенсорный слой сетчатки, в котором обнаруживаются (в 1-е минуты и часы) изменения наружных сегментов, характеризующиеся расслоением, разрывом и вакуольной дегенерации мембранных дисков. Механизмы указанных изменений универсальны и ведущую роль в них играет активизация ПОЛ(перекисного окисления липидов). Но именно для высокомембранных структур фоторецепторов риск свободнорадикального окисления(СРО) особенно велик, так как более половины их фосфолипидов содержит полиеновые жирнокислотные остатки, восприимчивые к атаке липидными радикалами и активными формами кислорода.

Наиболее агрессивное действие на нейросенсорные клетки оказывает свет в комбинации с рентгеновским излучениеми весьма отчетливо демонстрирует закономерность в последовательности нарушений их структур: вначале — деструкция наружного сегмента, накопление и агглютинация везикул в претерминальных отростках и дегенерация по темному типу, затем нарушение эллипсоида и миоида, и, наконец, кариопикноз и кариолизис. Наряду с чувствительностью нейросенсорных клеток к различным излучениям, нельзя не отметить их высокую регенерирующую способность и даже при деструкции наружного сегмента и отрыве эллипсоида, но сохранении перикариона и ядра возможна последующая регенерация.

Нарушения в нейросенсорных клетках теснейшим образом связаны с изменениями пигментного эпителия. Деструкция наружных сегментов закономерно сопровождается усилением фагоцитарной активности пигментоэпителиоцитов и накоплением фагосом, содержащих мембранные диски в цитоплазме. Клетка словно "объелась", но не может переварить фагосомы. В результате часть пигментоэпителиоцитов гибнет вследствие СРО и ПОЛ, что приводит к срыву антиоксидантной защиты. Очаговая гибель ивыпадение пигментоэпителиальногослоя приводит кпрорыву гематоретинального барьера, поскольку одним из основных его компонентов являются плотные замыкающие контакты между пигментоэпителиоцитамиНекроз нейросенсорных клетокпосле комбинации рентген + свет сопровождается быстрым (1 - 2-е сутки) разрастанием склеральных отростков радиальной глии, замещением ими фотосенсорного и наружного ядерного слоев, интенсивной фагоцитарной деятельностью данного вида глии. Дальнейшее развитие событий связано с попытками пигментного эпителия к репарации, нагромождением пролиферирующих эпителиоцитов, прорастанием между ними капилляров из хороидеи в сетчатку.Неоваскулогенезнарушает проницаемостные характеристики ГРБ, создает необычные условия для пигментоэпителиоцитов и сохранившихся нейросенсорных клеток, вызывая их гибель. Длительное высокоинтенсивное освещение животных (45 сут) приводит к полному некрозу нейросенсорных клеток у животных-альбиносов и их ослеплению. Продукты пероксидации повреждают такжемембранные структуры синапсов и радиальных глиоцитов.

Среди ранних неспецифических изменений межнейронных синапсов отмечены агглютинация синаптических везикул,вакуолизация пресинаптического отдела, а такжедегенерацияпреимущественно по светлому типу, реже встречается темный тип деструкции контактов. Изменениярадиальной глиихарактеризуются реактивными изменениями в видеотека глиоплазмыотростков с деструкцией органелл, а также усиления фагоцитарной активности. Деструктивными проявляющимися повышение осмиофилии, вакуолизация цитоплазмы и сморщивание ядра. Пролиферативными, которые максимально выражены в очагах поражения сетчатки, где наблюдается замещение глиальными отростками слоев образованных НСК. Следствием описанных событий являетсянарушение межнейрональных и глионейрональных связей, что вызывает деструкцию ассоциативных и ганглионарных нейронов. Измененияассоциативных нейроновпри указанных воздействиях характеризовались темным и светлым типом деструкции. Поражениеганглионарных нейроноввстречается в двух формах - это хроматолиз тотальный, и очаговый, а также повышение осмиофилии со сморщиванием.Выраженность деструкции структур сетчатки убывает в следующей последовательности: нейросенсорные клетки – пигментный эпителий – синапсы – радиальная глия – нейроны внутренних слоев сетчатки (ганглионарные и ассоциативные).