Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ст.шпоры / Анат.Скриг / Anatomia_shpory

.docx
Скачиваний:
71
Добавлен:
07.03.2016
Размер:
195.47 Кб
Скачать

Лекция 19.

проводящая система сердца. узлы проводящей системы сердца, их значения Автоматия - способность сердца сокращаться под действием импульсов, которые возникают в нём самом. Автоматия обеспечивается атипичной мускулатурой, которая образует ряд узлов и пучков в сердце человека. Их совокупность - проводящая система сердца. Она включает следующие компоненты. Синоатриальный узел - на задней стенке правого предсердия между устьями полых вен. Он ведущий в возникновении нервных импульсов. Клетка - пейсмейкеры (Р-клетки) - мелкие, имеют веретенообразную форму. Несколько клеток заключены в единую базальную мембрану, к которой подходит много нервных окончаний. Предсердные тракты, соединяющие синоатриальный узел с атриовентикулярным узлом. Всего их 3:передний пучок Бахмана - от передней части синоатриального узла, по передней стенке от правого в левое предсердие, от него - ответвления к атриовентрикулярному узлу; средний пучок Веккербаха - идёт в межпредсердной перегородке к атриовентрикулярному узлу, дает ответвления к левому предсердию. задний пучок Тореля - от задней поверхности синоатриального узла по задней стенке в межпредсердную перегородку.Атриовентрикулярный узел (Ашор-Товара) - атриовенкулярный узел расположен в нижней части межпредсердной перегородки справа. Может генерировать нервные импульсы, когда не работает синоатриальный узел. В нормальных условиях атриовенкулярный узел лишь проводит импульсы к желудочкам. Обеспечивает задержку, т. к. Скорость проведения возбуждения через атриовентрикулярный узел равна 0,02-0,05 м/с - это необходимо для поочерёдного сокращения предсердий и желудочков.Пучок Гиса (до 1 см) - идёт в межжелудочковой перегородке, затем к желудочкам, делится на 2 ножки.Волокна Пуркинье - образуют синапсы на кардиомиоцитах, обеспечивают сопряжение поступления возбуждения и мышечного сокращения.В сердце есть дополнительные тракты, соединяющие предсердия и желудочки в обход атриовентрикулярного узла:Пучок Кента - по боковой поверхности правого и левого предсердий, проходит через фиброзное кольцо и подходит к артиовентрикулярному узлу или к пучку Гисса.Пучок Маккейма - идёт в составе межпредсердной перегородки и заходит в межжелудочковую перегородку и желудочки.Значение: проведение импульсов в желудочки при поражении атриовентрикулярного узла. В нормальных условиях дополнительные тракты начинают действовать при перевозбуждении миокарда, вызывая аритмию.

Лекция 20.

свойства сердечной мышцы. электрокардиограмма, характеристика её зубцов и отрезков. регуляция работы сердца Основные свойства сердечной мышцы: возбудимость, проводимость, сократимость и автоматия. Возбудимость - это способность миокарда под действием электриче­ских, химических, термических и других раздражителей приходить в состоя­ние возбуждения. Процессы возбуждения в сердечной мышце, как и в любой другой ткани, сопровождаются изменением биоэлектрических процессов в мышечных клетках. Эти биоэлектрические процессы могут быть зарегистри­рованы с помощью специальных приборов - электрокардиографов. Исключи­тельно важной особенностью клеток рабочего миокарда является очень дли­тельный (в 100 больше, чем у скелетной мышцы) рефрактерный период, что исключает возможность тетанического сокращения сердца, заставляя его работать только в режиме одиночного сокращения и создает условия к рит­мическому сокращению органа. Проводимость (т.е. возможность прохождения возбуждения по ткани) сердечной мышцы очень высока и обеспечивается особым строением межклеточных контактов как в рабочем миокарде, так и в проводящей системе сердца. Сократимость сердечной мышцы отличается от скелетной. Миокард почти не обнаруживает зависимости между силой раздражения и величиной реакции. На допороговые раздражения миокард вообще не отвечает, но как только сила раздражения достигает порогового уровня, возникает максималь­ное сокращение. Дальнейшее нарастание раздражающего тока не меняет величины раздражения (закон "все или ничего"). Сократимость сердечной мышцы определяется особенностями строения ее волокон и соотношением между длиной и напряжением саркомера. Другими словами, чем сильнее сердце растянуто во время диастолы, тем сильнее оно сокращается во время систолы (закон Франка - Стерлинга). Огромное значение для перехода про­цесса возбуждения в процесс сокращения (явление электромеханического со­пряжения) в миокарде имеют ионы кальция. Недостаток этих ионов в мио­карде приводит к полному разобщению возбуждения и сокращения. При этом электрические явления, регистрируемые в виде электрокардиограммы, оста­ются в неизменном виде, а сокращения кардиомиоцитов не происходит. Автоматия, т.е. способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом орга­не, является характерной особенностью сердца. Ритмическое сокращение сердца проявляется уже на ранних стадиях эмбрионального развития (у чело­веческого эмбриона - на 18-20 день). Так же ритмически сокращаются сер­дечные клетки эмбриона в культуре тканей (т.е. вне организма). Природа автоматии до сих пор до конца не выяснена. У высших животных и человека возникновение импульсов связано с функцией атипических мышечных кле­ток, образующих проводящую систему сердца (рис. 73). Нервные структуры способны оказывать влияние на силу и частоту их разрядов, однако сам про­цесс генерации импульсов является специфической особенностью клеток проводящей системы.

Работа сердца регулируется нервной и эндокринной системами, а также ионами Ca и K, которые содержатся в крови. Работа нервной системы над сердцем состоит в регуляции частоты и силы сердечных сокращений (симпатическая нервная система обуславливает усиление сокращений,парасимпатическая — ослабляет). Работа эндокринной системы над сердцем состоит в выделении гормонов, которые усиливают или ослабляют сердечные сокращения. Основной железой выделения гормонов, которые регулируют работу сердца, являются надпочечники. Они выделяют гормоны адреналин и ацетилхолин, функции которых относительно сердца соответствуют функциям симпатической и парасимпатической системам. Такую же работу исполняют соответственно ионы Ca и K. Электрокардиограмма (ЭКГ) – один из самых распространенных и эффективных методов диагностики сердечно-сосудистых заболеваний, основанный на анализе кривой – результата фиксации электрических напряжений в мышце работающего сердца.

Лекция 21.

понятие дыхания, его значение. этапы дыхания Дыхание - это совокупность процессов, участвующих в обеспечении организма кислородом и выделении углекислого газа. Организм получает кислород в процессе дыхания. К органам дыхания относятся носовая полость, гортань, трахея, бронхи, лёгкие. Рассмотрим их по порядку. Носовая полость, образованная костями лицевой части черепа и хрящами, выстлана слизистой оболочкой, которую образуют многочисленные волоски и клетки, покрывающие полость носа. Волоски задерживают частички пыли из воздуха, а слизь предотвращает проникновение микробов. Благодаря кровеносным сосудам, пронизывающим слизистую оболочку, воздух, проходя через носовую полость, очищается, увлажняется и согревается. Через носоглотку воздух поступает в гортань, образованную хрящами, которые соединены между собой связками и мышцами. Здесь расположены голосовые связки, вибрация которых при прохождении воздуха вызывает образование звуков. Далее воздух поступает в трахею, имеющую форму трубки длиной 10–14 см. Хрящевые кольца, составляющие её стенки, не позволяют задерживаться воздуху при любых движениях шеи. Внизу трахея разделяется на два бронха, которые входят в правое и левое лёгкие. Здесь они ветвятся на бронхиолы и заканчиваются лёгочными пузырьками (альвеолами). Бронхиолы и альвеолы образуют два лёгких. В лёгких насчитывается более 300 миллионов альвеол. По артериям малого круга кровообращения в лёгкие поступает венозная кровь, которая обогащается здесь кислородом и становится артериальной. Одновременно венозная кровь освобождается от углекислого газа, который проникает в лёгочные пузырьки и во время выдоха выводится из организма. Далее уже артериальная кровь по сосудам большого круга кровообращения движется по направлению к органам тела и обогащает их ткани кислородом. Кислород необходим для процессов жизнедеятельности клетки. При этом образуется углекислый газ, поступающий из клеток тканей в кровь, в результате чего кровь из артериальной становится венозной. Поступление воздуха в лёгкие происходит автоматически под влиянием нервной системы в результате дыхательных движений – вдоха и выдоха, которые осуществляются с помощью межрёберных мышц и диафрагмы (мышечной перегородки, разделяющей грудную и брюшную полости).Условно процесс дыхания делится на 3 этапа:Внешнее дыхание.Диффузия кислорода и его транспортировка к тканям.Тканевое дыхание.

Лекция 22.

механизмы газообмена в лёгких и тканях

Содержание газов во вдыхаемом и выдыхаемом воздухе неодинаково. Во вдыхаемом воздухе содержится почти 21% кислорода, около 79% азота, примерно 0,03% углекислого газа, небольшое количество водяных паров и инертных газов. В выдыхаемом — 16% кислорода, 4% углекислого газа, увеличивается содержание паров, количество азота и инертных газов остается неизменным.

Кровь, которая течет к легким от сердца (венозная), содержит мало кислорода и много углекислого газа; воздух в альвеолах, наоборот, содержит много кислорода и меньше углекислого газа. Вследствие этого через стенки альвеол и капилляров происходит двусторонняя диффузия —. кислород переходит в кровь, а углекислый газ поступает из крови в альвеолы. В крови кислород проникает в эритроциты и соединяется с гемоглобином. Кровь, насыщенная кислородом, становится артериальной и по легочным венам поступает в левое предсердие.

У человека обмен газами завершается в несколько секунд, пока кровь проходит через альвеолы легких. Это возможно благодаря огромной поверхности легких, сообщающейся с внешней средой. Общая поверхность альвеол составляет свыше 90 м3.

Обмен газов в тканях осуществляется в капиллярах. Через их тонкие стенки кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Концентрация кислорода в крови больше, чем в клетках, поэтому он легко диффундирует в них.

Концентрация углекислого газа в тканях, где он собирается, выше, чем в крови. Поэтому он переходит в кровь, где связывается химическими соединениями плазмы и отчасти с гемоглобином, транспортируется кровью в легкие и выделяется в атмосферу.

Лекция 23.

понятие о гипоксии. острые и хронические формы. виды гипоксий.

Гипоксия  — кислород), кислородное голодание, кислородная недостаточность - состояние, возникающее при недостаточном поступлении кислорода к тканям или нарушении его утилизации в процессе биологического окисления. Гипоксия характеризуется метаболическими нарушениями, преимущественно со стороны энергетического (дефицит макроэргических соединений) и углеводного (усиление гликолиза, увеличение концентрации молочной и пировиноградной кислот в сыворотке крови) обмена, развитием метаболического ацидоза. Виды гипоксии Различают гипоксическую, гемическую, циркуляторную, тканевую (гистотоксическую) и смешанную формы гипоксии.

Гипоксическая гипоксия возникает вследствие снижения парциального давления кислорода во вдыхаемом воздухе или затруднения проникновения кислорода в кровь через дыхательные пути. Гемическая гипоксия является следствием снижения количества эритроцитов в периферической крови или резкого понижения содержания гемоглобина в эритроцитах.

Циркуляторная  гипоксия обусловлена нарушением функций сердечно-сосудистой системы (ослаблением работы сердца, спазмом сосудов) и ухудшением вследствие этого поступления   кислорода   к   тканям. Тканевая гипоксия возникает в связи с ухудшением утилизации кислорода при нарушениях процессов биол. окисления и связана с повреждением окислит, ферментных систем, мембранных структур клетки и др. Острая гипоксия наблюдается при массивной кровопотере (см. Кровотечение), инфаркте миокарда и других тяжелых состояниях, а также при отравлении окисью углерода (угарным газом), о результате чего нарушается способность крови переносить к тканям кислород. Хроническая гипоксия может развиваться при патологических изменениях легочной ткани (например, при эмфиземе легких, пороках сердца, кардиосклерозе), что связано с нарушением дыхательной функции легких или со слабостью сердечной деятельности и недостаточным кровоснабжением тканей.

Лекция 24.

нарушение функций организма при гипоксии Гипоксия является одним из наиболее общих патогенетических факторов в процессах, нарушающих то или иное звено внешнего или внутреннего (тканевого) дыхания. Первичная причина гипоксии - абсолютный или относительный недостаток кислорода в клетках, что приводит к расстройству электрогенеза в возбудимых мембранах и разобщению окислительного фосфорилирования. При этом возникают вторичные изменения, которые характеризуются нарушением гемодинамики и микроциркуляции, потерями ферментов клетками, повреждением мембран лизосом с выходом аутолитических энзимов. Активация свободнорадикальных реакций приводит к окислению липидов мембран и дальнейшему нарушению их функции.В 1948 г. предложена Питерсом и Ван-Слайком классификация различных форм гипоксии по патогенетическому принципу:гипоксическая гипоксия:от понижения парциального давления кислорода во вдыхаемом воздухе;в результате затруднения поступления кислорода в кровь через дыхательные пути;вследствие расстройства дыхания;гемическая гипоксия:анемический тип;в результате инактивации гемоглобина (характеризуется уменьшением кислородной емкости крови);циркуляторная гипоксия:застойная форма;ишемическая форма;тканевая гипоксия, при которой нарушаются процессы потребления кислорода тканями в связи с подавлением функциональной активности различных дыхательных ферментов.Наряду с указанным И. Р. Петров и другие выделяют смешанную форму гипоксии. По течению гипоксию делят на молниеносную (например, при вдыхании чистых инертных газов), острую и хроническую.При снижении содержания кислорода в артериальной крови и в тканях включаются компенсаторные механизмы, направленные на устранение кислородной недостаточности. К ним относятся дыхательные, сердечно-сосудистые, кровяные и тканевые реакции, которые устраняют возникшее понижение рСО2. При максимальном напряжении всех этих механизмов снабжение тканей кислородом может увеличиться в сравнении с нормой в 16-18 раз.В развитии гипоксии различают 2 стадии: компенсации и декомпенсации. В стадии декомпенсации кислородного голодания развиваются патологические изменения в важнейших системах и органах, наиболее чувствительных к недостатку кислорода. Так, при гипоксической гипоксии нарушение функции центральной нервной системы представляет непосредственную опасность для жизни человека. Как правило, вслед за изменениями в центральной нервной системе при острой гипоксии наблюдаются нарушения функций сердечно-сосудистой и дыхательной систем.

Соседние файлы в папке Анат.Скриг