Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tr.pdf
Скачиваний:
100
Добавлен:
07.03.2016
Размер:
1.82 Mб
Скачать

§ 11. Графики синуса и косинуса

 

 

 

 

Повторить: § 5. Часы, или современный взгляд на тригонометрию.

Построим график функции y = sin x. При этом нам опять при-

годятся часы из § 5.

 

 

 

 

 

Если x = 0, то, очевидно, y = 0. Когда x воз-

 

 

 

растает от 0 до π/2, число sin x возрастает от 0 до

 

 

 

1 (представьте себе, как меняется ордината кон-

 

 

 

ца стрелки на наших фирменных часах). Участок

 

 

 

графика для x от 0 до π/2 изображен на рис. 11.1.

 

 

 

При малых x наш график близок к прямой

 

 

 

 

y = x: вспомним, что при малых x верна при-

 

 

 

ближенная формула sin x ≈ x. Можно сказать,

 

Рис. 11.1.

 

что прямая y = x касается кривой с уравнением

 

 

 

y = sin x в точке (0; 0). Заметим также, что наш участок графика

расположен ниже этой прямой: ведь для острых углов x, измерен-

ных в радианах, выполнено неравенство sin x < x.

 

 

 

Чем ближе x к π/2, тем более полого идет наша кривая. Это

происходит потому, что проекция конца стрелки на ось ординат,

колеблясь по отрезку [−1; 1], быстрее всего движется в середине

отрезка и замедляется у его краев: мы это уже обсуждали в § 5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а)

 

б)

 

 

 

 

 

Рис. 11.2.

 

 

 

 

Пусть далее, π/2 6 x 6 2π (стрелка часов продолжает движение). Тогда, очевидно, ордината конца стрелки, то есть sin x, уменьшается от 1 до 0 — рис. 11.2а. Далее, когда x возрастает

53

от π до 3π/2, sin x уменьшается от 0 до −1, а когда x возрастает от 3π/2 до 2π, возрастает от −1 до 0. Итак, участок графика для 0 6 x 6 2π готов (рис. 11.2б). Заметим, кстати, что кривая на рис 11.2а симметрична относительно вертикальной прямой с уравнением x = π/2. В самом деле, формула приведения sin(π/2 − x) = sin x показывает, что точки с абсциссами x и π − x имеют на графике одинаковые ординаты и, стало быть, симметричны относительно прямой x = π/2 (рис. 11.3а).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а)

 

 

б)

 

 

 

 

 

Рис. 11.3.

 

 

 

Задача 11.1. Запишите уравнение прямой, касающейся графика функции y = sin x в точке с координатами (π; 0).

Кривая на рис 11.2б центрально симметрична относительно точки с координатами (π; 0); это следует из другой формулы приведения: sin(2π − x) = − sin x (рис. 11.3б).

После того, как у нас есть участок графика функции y = sin x для 0 6 x 6 2π, весь график строится уже просто. В самом деле, когда конец стрелки прошел путь 2π, стрелка вернулась в исходное положение; при дальнейшем движении все будет повторяться. Значит, график будет состоять из таких же кусков, как на рис 11.2б. Окончательно график функции y = sin x выглядит так, как на рис. 11.4. При этом участки графика при x [2π; 4π], [4π; 6π], [−2π; 0],. . . получаются из графика на рис 11.2б сдвигом вдоль оси абсцисс на 2π, 4π, −2π,. . . соответственно. Это — просто переформулировка того факта, что функция y = sin x имеет период 2π.

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 11.4. y = sin x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 11.5. y = cos x.

Теперь построим график функции y = cos x. Можно было бы строить его так же, как мы строили график синуса. Мы, однако, изберем другой путь, который позволит использовать уже имеющуюся у нас информацию.

Именно, воспользуемся формулой приведения sin(x + π/2) = = cos x. Эту формулу можно понимать так: функция y = cos x принимает те же значения, что и функция y = sin x, но на π/2 раньше. Например, функция y = sin x принимает значение 1 при x = π/2, а функция y = cos x = sin(x + π/2) принимает это же значение уже при x = 0. На графике это означает следующее: для каждой точки графика y = sin x есть точка графика y = cos x, у которой ордината та же, а абсцисса на π/2 меньше (рис. 11.5). Стало быть, график y = cos x получится, если сдвинуть график y = sin x вдоль оси абсцисс на π/2 влево. На рис. 11.5 график функции y = cos x изображен сплошной кривой.

Итак, мы выяснили, что график косинуса получается преобра-

55

зованием (сдвигом) из графика синуса. Случаи, когда график одной функции можно получить преобразованием из графика другой функции, интересны и сами по себе, поэтому скажем о них несколько слов.

Как, например, будет выглядеть график функции y = 2 sin x? Ясно, что ординаты точек этого графика получаются из ординат соответствующих точек графика y = sin x умножением на 2, так что наш график изобразится сплошной кривой на рис. 11.6. Можно сказать, что график y = 2 sin x получается из графика y = sin x растяжением в два раза вдоль оси ординат.

 

 

 

 

 

 

 

 

 

Рис. 11.6. y = 2 sin x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 11.7. y = sin 2x.

Теперь построим график функции y = sin 2x. Легко понять,

56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 11.8. y = sin(2x + π/3).

что функция y = sin 2x принимает те же самые значения, что и функция y = sin x, но при в два раза меньших значениях x. Например, функция y = sin x принимает значение 1 при x = π/2, а функция y = sin 2x — уже при x = π/4; иными словами, чтобы получить график y = sin 2x, надо абсциссы всех точек графика y = sin x уменьшить в два раза, а ординаты оставить неизменными. То, что получается, изображено на рис. 11.7. Можно сказать, что график y = sin 2x (сплошная линия на рис. 11.7) получается из графика y = sin x сжатием в 2 раза к оси ординат.

Попробуем еще построить график функции y = sin(2x + π/3). Понятно, что он должен получаться каким-то преобразованием из графика y = sin 2x. На первый взгляд может показаться, что это преобразование — сдвиг влево на π/3 вдоль оси абсцисс, по аналогии с тем, что изображено на рис. 11.5. Однако, если бы это было так, то вышло бы, например, что функция y = sin(2x + π/3) принимает значение 1 при x = π/4 − π/3 = π/12, что не соответствует действительности (проверьте!). Правильно рассуждать так: sin(2x + π/3) = sin 2(x + π/6), так что функция y = sin(2x+π/3) принимает те же значения, что и функция y = sin 2x, но на π/6 раньше. Так что сдвиг влево — не на π/3, а на π/6 (рис. 11.8).

Кривые, являющиеся графиками функций y = a sin bx, где a 6= 0, b 6= 0, называются синусоидами. Заметим, что кривой «косинусоида» вводить не надо: как мы видели, график косинуса — это та же кривая, что и график синуса, только иначе расположен-

57

ная относительно осей координат.

Задача 11.2. Каковы координаты точек, помеченных на рис. 11.8 вопросительными знаками?

Задача 11.3. Возьмите свечу, тонкий лист бумаги и острый нож. Намотайте лист бумаги на свечу в несколько слоев и аккуратно разрежьте эту свечу вместе с бумагой наискосок ножом. Теперь разверните бумагу. Вы увидите, что она оказалась разрезанной по волнистой линии. Докажите, что эта волнистая линия является синусоидой.

Задача 11.4. Постройте графики функций:

 

 

 

 

 

 

 

г) y = 3 cos 2x;

y = cos

2x

π

 

 

 

y = sin

 

x π

 

а) y = − sin x; б)

y = sin

x

4

π

;

в) y = cos(x/2);

 

ж) y = sin(πx). д)

 

 

;

е)

 

 

 

 

;

 

 

 

 

 

 

4

 

2

4

Замечание. Если вы строите графики тригонометрических функций на клетчатой бумаге, удобно выбрать немного разные масштабы по осям, с тем чтобы на оси абсцисс числу π соответствовало целое число клеточек. Например, часто выбирают такой масштаб: по оси ординат отрезок длины 1 занимает две клеточки, по оси абсцисс отрезок длины π занимает 6 клеточек.

Задача 11.5. Постройте графики функций:

а) y = arcsin x; б) y = arccos x.

Посмотрим, как выглядят на графиках уже известные нам решения уравнений sin x = a и cos x = a. Эти решения являются абсциссами точек пересечения горизонтальной прямой y = a с графиком функций y = sin x (соответственно y = cos x). На рис. 11.9, 11.10 хорошо видны две серии решений, получающихся при −1 < a < 1.

По графикам синуса и косинуса видно, на каких промежутках эти функции возрастают, а на каких убывают. Ясно, например, что функция y = sin x возрастает на отрезках [−π/2; π/2],

58

Рис. 11.9.

 

 

 

 

 

 

 

Рис. 11.10.

 

59

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]