
- •Халықаралық бизнес университеті
- •Халықаралық бизнес университеті
- •Оқытушыға арналған пәннің оқу жұмыс бағдарламасы
- •Алматы, 2013
- •Күнтізбелік-тақырыптық жоспар
- •Пәннің мазмұны
- •Негізгі оқыту әдебиеттері
- •Қосымша оқыту әдебиеттері
- •Халықаралық бизнес университеті
- •Алматы, 2013
- •Силлабус (үлгі)
- •5B090800-«Бағалау мамандығына арналған «Математика» пәнін оқу – әдістемелерімен қамтамасыз ету картасы
- •1. Сызықтық алгебра
- •§1.1. Матрицалар (тікшемдер). 2 - шi, 3 - шi peттi анықтауыштар. Анықтауыштардың қасиеттері.
- •§1.2. Минорлар мен алгебралық, толықтауыштар
- •§1.3. Матрицаларға амалдар қолдану
- •§1.4. Матрица рангі
- •§1.5. Сызықтық алгебралық теңдеулер жүйесі (сатж). Матрицалық әдіс және Крамер ережесі
- •§1.6. Сатж зерттеудің және оның шешімін табудың Гаусс әдісі
- •§1.7. Біртекті және біртекті емес сызықтық алгебралық теңдеулер жүйесі
- •1. Векторлар және оларға қолданылатын амалдар.
- •§2.2 Векторлық кеңістік базисі. Вектор координаталары.
- •§2.3 Кесіндіні берілген қатынасқа бөлу
- •§2.4 Векторлардың түзуіге проекциясы. Векторлардың скаляр көбейтіндісі және оның қасиеттері.
- •§2.5 Векторлық көбейтінді және оның қасиеттері.
- •§2.6 Векторлардың аралас көбейтіндісі.
- •Аналитикалық геометрия негіздері.
- •§ 1.1. Жазықтықтағы түзу
- •§1.2. Жазықтық теңдеуі.
- •§ 2.3. Кеңістіктегі түзу.
- •§2.4. Жазықтықтағы екінші ретті қисықтар
- •§ 2.5. Екінші ретті беттер
- •1. Эллипсоид
- •4. Екінші peттi конус
- •5.Екінші ретті цилиндрлер
- •Математикалық талдауға к1р1спе. Б1р айнымалы функцияның дифференциалдық есептеу
- •§ 3.1. Жиындар мен математикалық логика элементтері Аралықтар
- •1. Математика пәні. Тұрақты және айнымалы шамалар
- •2. Жиындар
- •§ 3.2. Функциялар
- •1. Функция. Оның бepілyi.
- •2. Элементар функциялар
- •§3.3. Шектер
- •1. Нақты сандар тізбегі және оның шегі
- •2. Шексіз азаятын және шексіз үлкейетін шамалар
- •4. Монотонды тізбектер. Е — саны
- •5. Тізбектің жинақталуының Коши шарты
- •6. Функцияның шегі.
- •7. Шегі бар функциялардың қасиетгері.
- •8. Шексіз аз және шексіз үлкен шамалар.
- •9. Функциялардың үзіліссіздігі.
- •10. Екі тамаша шек
- •11. Шексіз аз және шексіз үлкен шамаларды салыстыру
- •13. Кесіндіде үзіліссіз функциялардың қасиетттері
- •§ 3.4. Бip айнымалы функцияның дифференициалдық ecenтелyi
- •1. Туынды
- •2. Туындының механикалық және геометриялық мағынасы
- •3. Дифференциалдау ережелері
- •4.Kepi функция туындысы
- •5. Параметрмен берілген функция және оның туындысы
- •6. Функция дифференциалы
- •7. Жоғарғы peттi туындылар мен дифференциалдар
- •8. Дифференциалданатын функциялар туралы теоремалар
- •9. Лопиталь ережесі
- •10. Тейлор формуласы
- •§3.5.Туындылардыц көмегімен функцияларды зерттеу 1. Функциялардың локальді экстремумі
- •3. Функция графигігінің асимптоталары
- •4. Функцияны зерттеу схемасы және оның графигін салу
- •Көп айнымалыЛы функциялар
- •§4.1. Көп айнымалы функциялар. Анықталу аймағы
- •§4.2. Функцияның дербес және толық, өсімшелері. Шек және үзіліссіздік.
- •§4.3. Туындылар мен дифференциалдар
- •3. Бетке жанама жазықтық. Толық дифференциалдың геометриялық көpiнici.
- •4. Толық дифферендиалдың жуықтап есептеулерге қолданылуы
- •§4.4. Күрделі және айқындалмаған функцияларды дифференциалдау
- •§4.5. Бағыт бойынша туынды. Градиент және оның қасиеттері.
- •§4.6. Жоғары peттi дербес туындылар мен толық дифференциалдар. Тейлор формуласы
- •§4.7. Көп айнымалы функциялардың экстремумдері
- •5 Тарау интегралдар
- •§5.1 Комплекс сандар
- •§ 5.3. Анықталмаған интеграл. Интегралдар кестесі
- •§ 5.4. Интегралдау әдістері
- •1. Ауыстыру (айнымалыны алмастыру) әдісі.
- •§5.5. Рационал белшектерді интегралдау.
- •§5.6. Кейбір иррационал өрнектерді интегралдау
- •§ 5.7. Тригонометриялык функцияларды интегралдау
- •§ 5.8. Анықталган интеграл ұғымына әкелетін есептер.
- •1. Геометриялық және физикалық есептер. Анықталған
- •2. Анықталған интегралдардың касиеттері
- •§5.9. Интегралдан оның жоғары шегі арқылы туынды алу
- •§ 5.10. Ньютон-Лейбниц формуласы және оның анықталған
- •§ 5.11. Меншіксіз интегралдар
- •§ 5.12. Анықталған интегралдың колданылуы
- •Тақырыптарды меңгеру дәрежесін анықтауға арналған сұрақтар 1. Сызықтық және векторлық алгебра
- •2. Аналитикалық геометрия
- •3 . Математикалық талдауға кipicne. Бip айнымалы функцияның дифференциалы есептеуі.
- •4. Көп айнымалылы функция
- •5. Интегралдық есептеу
- •§ 3.1. Жиындар мен математикалықлогика элементтері Аралықтар
- •§ 3.2. Функциялар
- •§3.3. Шектер
- •§ 3.4. Бip айнымалы функцияның дифференициалдық ecenтелyi
- •§3.5.Туындылардыц көмегімен функцияларды зерттеу 1. Функциялардың локальді экстремумі
- •§4.1. Көп айнымалы функциялар. Анықталу аймағы
- •§4.2. Функцияның дербес және толық, өсімшелері. Шек және үзіліссіздік.
- •§4.3. Туындылар мен дифференциалдар
- •§4.4. Күрделі және айқындалмаған функцияларды дифференциалдау
- •§4.5. Бағыт бойынша туынды. Градиент және оның қасиеттері.
- •§4.6. Жоғары peттi дербес туындылар мен толық дифференциалдар. Тейлор формуласы
- •§4.7. Көп айнымалы функциялардың экстремумдері
- •§5.1 Комплекс сандар
- •§ 5.3. Анықталмаған интеграл. Интегралдар кестесі
- •§ 5.4. Интегралдау әдістері
- •§5.5. Рационал белшектерді интегралдау.
- •§5.6. Кейбір иррационал өрнектерді интегралдау
- •§ 5.7. Тригонометриялык функцияларды интегралдау
- •§ 5.8. Анықталган интеграл ұғымына әкелетін есептер.
- •§5.9. Интегралдан оның жоғары шегі арқылы туынды алу
- •§ 5.10. Ньютон-Лейбниц формуласы және оның анықталған
- •§ 5.11. Меншіксіз интегралдар
- •§ 5.12. Анықталған интегралдың колданылуы
- •Глоссарий:
- •Студенттерге таратылатын материалдар
§ 5.12. Анықталған интегралдың колданылуы
1. Қисық доғасының ұзындыгы. Егер
(1)
теңдеулеріндегі φ мен ψ функциялары [а,b]-да үзіліссіз болса, онда ол теңдеулер t параметрінің көмегімен берілген жазықтағы үзіліссіз қисықты анықтайды. t параметрі өссе, (φ(t),ψ(t)) нүктесі жазықтықта қозғалып отырады. t-нің әр түрлі мәндеріне, мысалы, t =t1, t=t2 (t1≠t2) мәндерінде жазықтықтын бiр ғана нүктесі сәйкес келуі де мүмкін:
Егер φ(t) мен ψ(t) функцияларының [а,b]-да үзіліссіз туындылары бар болса және
(2)
орындалса, онда (1) – тегіс қисық деп аталады.
Егер
(3)
теңдеулеріндегі φ,ψ,x функциялары [а,b]-да үзіліссіз болса, онда олар кеңістіктегі үзіліссіз қисықты анықтайды. Ол қисықты Г арқылы белгілейік. Егер φ,ψ,x функцияларының [а,b]-да үзіліссіз туындылары бар және олар бip мезгілде нөлге тең емес, яғни
(4)
болса, онда Г - тегіс қисық деп аталады.
Теорема.
теңдеулерімен берілген тегіс қисық – түзуленетін қисық және оның ұзындығы
(5)
тең.
Осы доғаның дифференциалы
(6)
Г
R2
қисығы үзіліссіз
дифференциалданатын
Г: y = f(x), а≤х≤b (7)
функциясы арқылы берілсе, онда
яғни, қисықты х - параметрі арқылы берілді деп есептеуге болады. Олай болса, (5) бойынша
(8)
ал доға дифференциалы
(9)
тең.
Егер
Г
R2
қисығы поляр координаттары
арқылы
Г: р = р(φ), α≤φ≤β берілсе, онда
(10)
2. Жазық фигура ауданы. Егер [а,b] кесіндісінде функция f(x)≥0 болса, онда анықталған интеграл анықтамасы бойынша y = f(x) қисығымен, Ох-өсімен және х=а, х=b түзулерімен шенелген қисық сызықты трапеция ауданы
(11)
тең.
Егер [а,b]-де f(x)≤0 болса, онда (11) анықталған интегралда ≤0 болады, ал оның абсолют шамасы сәйкес қисық сызықты трапецияның ауданына тең.
Егер f(x) таңбасы [а,b]-де ақырлы сан рет өзгерсе, онда y = f(x), Ох, х=а, х=b қисықтарымен шенелген жазық фигура ауданы үшін [а,b] кeciндiciн f(x) таңбасы тұрақты болатындай бөліктерге бөліп, осы бөліктер бойынша алынған интегралдардың абсолют шамаларының қосындысын алуға болады немесе
(12)
интегралын есептеу керек (29-сурет)
29-сурет
Егер
y=f1(x), y = f2(x),
x=a, х=b
(f1(x)≤f2(x),
)
қисықтарымен шенелген фигура ауданын
табу керек болса, онда
(13)
аламыз (30-сурет)
30-сурет
Егер қисық x=φ(t), y=ψ(t), α≤t≤β (φ(α) =a, φ(β) =b) параметрлік теңдеулермен берілсе, онда (11)-интегралда x=φ(t) айнымалы алмастыруын жасай отырып
(14)
31-сурет
О полюстен шығатын φ = α, φ= β сәулелерімен және поляр координаталары бойынша үзіліссіз r = f (φ) функциясымен берілген қисықпен шенелген фигураның S ауданын келесі түрде анықтауға болады (31-сурет).
(15)
тең деп саналады
3. Айналу дененің көлемі. Тік бұрыш х,y координаталар жуйесіне үзіліссіз оң y = f(x), a≤x≤b функциясымен сипатталған Г қисығы берілсін. Г қисығының х өсін айналуынан шыққан бетпен және х = а, х=b жазықтықтарымен шенелген
32-сурет
айналу денесінің V көлемінт есептеу керек болсын (32-сурет). Айналу денесінің көлемі
(16)
Қорытынды. № 59-60 лекциялардан кейін студент анықталған интегралды пайдаланып күрделі қисықтармен шектелген ауданды, айналу денесінің көлемін, пластинканың массасын т.с.с. үйренеді әрі есептер шығарып машықтанады.