Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
391647.rtf
Скачиваний:
169
Добавлен:
05.03.2016
Размер:
2.09 Mб
Скачать

1.2 Теплопроводность строительных материалов

Характеризуется коэффициентом теплопроводности λ, Вт/м· оС, выражающим количество тепла, проходящего через 1 м2 ограждения при его толщине 1 метр и при разности температур на внутренней и наружной поверхности ограждения 1 оС.

На коэффициент теплопроводности материала влияют следующие свойства материала.

Плотность (пористость): чем больше в материале замкнутых пор, тем меньше коэффициент теплопроводности, поскольку любого плотного материала не менее чем в 100 раз превышает воздуха.

  • Химико-минералогический состав. Любой строительный материал имеет в своем составе кристаллические и аморфные вещества в различных соотношениях. Чем выше процент кристаллических веществ, тем больше коэффициент теплопроводности.

  • Собственная температура материала. Чем она выше, тем большей теплопроводностью обладает конструкция.

  • Влажность материала. При увлажнении конструкции в поры, заполненные воздухом, попадает вода, коэффициент теплопроводности которой выше, чем у воздуха, приблизительно в 20 раз. Поэтому теплопроводность материала резко возрастает, возникает опасность промерзания ограждающей конструкции. При промерзании конструкции вода, находящаяся в порах, превращается в лёд, коэффициент теплопроводности которого выше, чем у воды, еще в 4 раза. Поэтому так важно не допускать переувлажнения ограждающих конструкций.

Наибольшим коэффициентом теплопроводности обладают металлы: сталь - 50 Вт/м·оС, алюминий - 190 Вт/м·оС, медь - 330 Вт/м·оС. Наименьший коэффициент теплопроводности у эффективных утеплителей, пенополистирола и пенополиуретана: 0,03-0,04 Вт/м·оС.

1.3 Термическое сопротивление (сопротивление теплопередаче)

R, м2·оС /Вт, - важнейшее теплотехническое свойство ограждения. Оно характеризуется разностью температур внутренней и наружной поверхности ограждения, через 1 м2 которого проходит 1 ватт тепловой энергии (1 килокалория в час).

, (2)

где δ - толщина ограждения, м;

λ - коэффициент теплопроводности, Вт/м·оС.

Чем больше термическое сопротивление ограждающей конструкции, тем лучше её теплозащитные свойства. Из формулы (2) видно, что для увеличения термического сопротивления R необходимо либо увеличить толщину ограждения δ, либо уменьшить коэффициент теплопроводности λ, то есть использовать более эффективные материалы. Последнее более выгодно из экономических соображений.

2. Теплопередача в однородном ограждении при установившемся потоке тепла

Представим себе условную ограждающую конструкцию, состоящую из однородного материала, через которую в холодное время года проходит постоянный тепловой поток. В этом случае график распределения температуры внутри ограждения выглядит следующим образом (рис. 1).

Рис. 1. Распределение температур в однородной ограждающей конструкции при постоянном тепловом потоке

При передаче тепла через ограждающую конструкцию происходит падение температуры от tв до tн. При этом общий температурный перепад tв- tн состоит из суммы трех температурных перепадов:

  1. температурный перепад tвв возникает из-за того, что температура внутренней поверхности ограждения τв всегда на несколько градусов ниже, чем температура воздуха в помещении tв;

  2. τвн - температурный перепад в пределах толщины ограждающей конструкции;

  3. τн-tн - температурный перепад, возникающий вследствие того, что температура наружной поверхности ограждения τн несколько выше температуры наружного воздуха tн.

Каждый из этих температурных перепадов вызван конкретным сопротивлением переносу тепла:

  1. перепад tвв - сопротивлением тепловосприятию внутренней поверхности ограждения Rв;

  2. перепад τвн - термическим сопротивлением конструкции Rк;

  3. перепад τн-tн - сопротивлением теплоотдаче наружной поверхности ограждения Rн.

Сопротивления тепловосприятию и теплоотдаче иногда называют сопротивлениями теплообмену; они имеют такую же размерность, как и термическое сопротивление, т. е. м2· оС/Вт.

Общее (приведенное) термическое сопротивление однослойной ограждающей конструкции Ro, м2· оС/Вт, равно сумме всех отдельных сопротивлений, т. е.

, (3)

где αв - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2·оС), определяемый по табл. 4* [1], см. также табл. 5 настоящего пособия;

αн - коэффициент теплоотдачи наружной поверхности ограждающих конструкций, Вт/(м2·оС), определяемый по табл. 6* [1], см. также табл. 6 настоящего пособия;

Rк - термическое сопротивление однослойной конструкции, определяемое по формуле (2).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]