
Расчет несимметричной трехфазной цепи
Порядок расчета состоит в следующем.
Преобразуем исходную цепь путем преобразования «звезды» в «треугольник» или наоборот в зависимости от конкретной схемы. Для этого необходимо использовать следующие формулы.
A
A
Za
Zca Zaв Zс Zв
C B C B
Zвc
Z
A
=
,Zв=
,ZС=
,
Z
АВ=
ZА+
Z
B
+
,Z
BC
= Z
B
+ Z
C
+
,Z
СА=
Z
C
+
Z
A +
.
Так как одноименные фазы эквивалентных треугольников присоединены к одинаковым напряжениям, то их можно считать соединенными параллельно и, сложив их проводимости, получить эквивалентный треугольник.
Эквивалентный треугольник преобразовать в эквивалентную звезду с целью учета сопротивления линии. В результате схема с несколькими несимметричными звездами преобразуется в схему с одной несимметричной звездой.
Мощности рассчитываются по формулам:
S = U I* , P = Re ( U I *) , Q = Im (U I *)
Симметричные составляющие нулевой, прямой и обратной последовательностей определяются по формулам:
А
0 =
;А
1 =
;А
2 =
,
Где А, В, С – векторы несимметричной системы,
а – оператор поворота, а = е j 120 o , a2 = e j 240 o .
Пример. Z1 Z3
Ia1
A1 Ia3 A2
A
Z1 Iв1 Iв3 Z3 B2
B
Z1 Ic1 C1 Ic3 Z3 C2
C
Ic2 Ia2 Iв2 Ica
Zс2 Zв2 Zca Zвс Zaв
Za2 Рисунок 1. Iaв
Заменим треугольник сопротивлений эквивалентной звездой и сложим сопротивления лучей звезды с сопротивлением линии Z 3. Получим две звезды, присоединенные к точкам А 1, В 1, С 1 (рис.2)
Z1
Ia1
A1
A
Z1 Iв1 B1
B
Z1 Ic1 C1
C
Ic2 Ia2 Iв2 Ic3 Ia3 Iв3
Zc2 Zв2 Zc3 Za3 Zв3
Za2
Рисунок 2.
Преобразуем каждую звезду в эквивалентный треугольник и просуммируем проводимости одноимённых ветвей. Получим схему с одним эквивалентным треугольником (рис.3)
Z1
Ia1
A1
A
Z1 Iв1
B
Z1 Ic1 C1 B1
C
Рисунок 3.
3. Преобразуем эквивалентный треугольник в эквивалентную звезду и сложим сопротивления лучей звезды с сопротивлениями линии Z 1 (рис.4)
Za
Ia1
A
Zв Iв1 N
B
Zс Ic1
C
Рисунок 4.
4. Получена несимметричная звезда без нейтрального провода. Найдем напряжение нейтрали:
U
N
=
,
где Y
– результирующие проводимости каждой
фазы соответственно индексу.
Напряжение на фазах этой звезды:
U A1 = U A – U N ; U B1 = UB – U N; U C1 = U C- U N
5. Ток в начале линии:
I
A1
=
и т.п.
6. Определим фазные напряжения на зажимах А 1,В 1,С 1:
UА1 = U A – IA1 Z1 и т. п.
7.Аналогично п.4, используя U A1, U B1, UC1 проводимости YA2, Y B2, Y C2, определим напряжение U N1, а затем токи в лучах исходной звезды.
U A1! = U A1 – U N1 и т. п.
Ia2
=
и
т.п.
8. Линейные токи исходного треугольника можно определить также как
в п.7 или по закону Кирхгофа:
I A3 = I A1 – IA2 и т.п.
9.Определим фазные и линейные напряжения на зажимах А 2, В 2, С 2.
U A2 = U A1 - I A3Z 3 и т.п.
U A2B2 = UА 2 – U B2 и т.п.
10. Определим токи в треугольнике
I
AB
=
и т.п.
Таким образом, нам стали известны токи в любом участке схемы, что позволяет определить любую мощность.
Все расчеты производятся в комплексной форме. Целесообразнее производить умножение и деление комплексных чисел в показательной форме, а сложение и вычитание в алгебраической.
Пример 1.
22е
-j
120 o
*10 e
j
60 o=
220e
j
(-120 o
60
o)= 220
e
-j
60 o
22е -j 120 o /10 e j 60 o = 2,2 e j ( -120 o – 60 o) = 2,2 e –j 180 o
Таким образом, при умножении комплексных чисел показатели их степеней складываются, а при делении – из показателя делимого вычитается показатель делителя. Модули соответственно перемножаются или делятся.
Пример 2.
22 е – j 120 o – 10e j 60 o
Для вычитания перейдем от показательной формы записи комплексного числа к алгебраической через тригонометрическую, используя формулу Эйлера
r e jj = r (cos j + j sin j), где
r – модуль комплексного числа, j - его аргумент.
22е –j 120o = 22 (cos (-120 o) + j sin (-120 o)) = 22 (cos 120 o – j sin 120 o) =
22
(-)
= - 11 – j 11
;
10
e
j 60 o
= 10 ( cos 60
o
+ j sin 60 o)
= 10 ()
= 5 + j 5
;
-11
– j
11
- 5 – j
5
= - 16 –j
27,7;
Переведем последнее комплексное число из алгебраической формы в показательную по формуле:
a
+ j b =
e
j arctg
-16
–j 27,7 =
ej
arctg
p
= 32 e
j 60o - p
= 32 e
–j 120 o - p
Напомним,
что аргумент комплексного числаj
= arctg
определяется по разному в зависимости
от того, в какой четверти лежит этот
угол.
II
j I
j
= p
- arctg
bj
= arctg
III 0 a IV 1
j
= arctg
j
= - arctg
Величины a и b в этих формулах берутся положительными.
Исходные данные для задания 2.
1. Определить величины, указанные на каждой схеме.
2.Построить векторную диаграмму токов для D или U в зависимости от
расположения ветви, указанной на схеме и разложить ток этой части
схемы на симметричные составляющие.
Исходные данные для 2-го задания.
R |
R 1 |
R 2 |
R 3 |
R 4 |
R 5 |
R 6 |
R 7 |
R 8 |
R 9 |
Ом |
К |
2К |
3К |
К |
4К |
5К |
К |
2К |
3К |
Х L |
L 1 |
L 2 |
L 3 |
L 4 |
L 5 |
X c |
C 1 |
C 2 |
C 3 |
C 4 |
C 5 |
Ом |
К |
2К |
3К |
К |
4К |
Ом |
К |
2К |
К |
2К |
3К |
K = pN , p = 1 для 31 группы р = 2 для 32 группы, N – номер по журналу
Для N:
1,10,19 |
2,11,20 |
3,12,21 |
4,13,22 |
5,14,23 |
6,15,24 |
7,16,25 |
8,17,26 |
9,18,27 |
Cx. 1 |
Сх.2 |
Сх.3 |
Сх.4 |
Сх.5 |
Сх.6 |
Сх.7 |
Сх.8 |
Сх.9 |
Задание 3