Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
43
Добавлен:
05.03.2016
Размер:
137.73 Кб
Скачать

Антикоагулянты Пероральные антикоагулянты

Пероральные антикоагулянты (ПА), также именуемые как непрямые антикоагулянты, уже более полувека используются для лечения и профилактики различных патологических процессов, обусловленных тромботическими процессами. Среди ПА различают две группы препаратов - производные кумарина и производные индандиона. Сегодня в большинстве стран отдается предпочтение кумариновым производным перед производными индандиона, что объясняется их более стабильным антикоагулянтным эффектом и более редкими аллергическими побочными эффектами.

Кумарины по химической структуре делятся на оксикумарины и кумарины с системой двойного кольца. К первой группе относятся фенпрокумарол (маркумар), аценокумарол (синкумар, аценокумарин, никумалон, нитрофарин, синтром, тромбостоп), варфарин (кумедин, мареван); ко второй - бисгидроксикумарол (дикумарин, дикумарол) и этилбискумацетат (пелентан, неодикумарин, тромексан).

К производным индандиона относятся фениндион (фенилин, диндеван, атромбон, данилон), омефин, нафарин и др.

Действие ПА в качестве антитромботических средств обусловлено нарушением образования в печени активной формы витамина К-2,3 эпоксида в печеночных хромосомах, что обусловливает подавление синтеза четырех витамин К—зависимых прокоагулянтов (факторов II, VII, IX и X) и двух естественных антикоагулянтных протеинов С и S. По механизму действия ПА являются конкурентными антагонистами витамина Кі. Ингибиция синтеза витамина К( ПА ведет к снижению плазменных уровней факторов II, VII, IX и Х и антикоагулянтных белков С и S. Причем, в начале лечения (в течение суток) первоначально снижаются уровни фактора VII, а затем и уровни факторов IX, Х и П. Стабильное антикоагулянтное состояние устанавливается приблизительно к концу первой недели антикоагулянтной терапии. В начале применения ПА может развиться гиперкоагуляционное состояние в результате быстрого снижения уровней антикоагулянтного протеина С (параллельно с фактором VII) до снижения прокоагулянтных факторов II, IX и X. Развитие такого дисбаланса между прокоагулянтами и анти коагулянтам и в начале применения ПА может вести к тромбозу кожных капилляров и венул с развитием некроза.

Всем ПА в той или иной мере присущ целый род недостатков, которые следует учитывать при их назначении. В таблице № 7 суммированы недостатки ПА.

Таблица № 7. Недостатки пероральных антикоагулянтов.

  • Отсроченное начало действия.

  • Необходимость постоянного мониторирования лабораторных коагуляционных тестов (протромбиновое время, INR).

  • Протромбиновое время не всегда адекватно отражает эффект ПА.

  • Взаимодействие со многими часто применяемыми препаратами, обусловл и вающее:

  • потенцирование антикоагуляции;

  • снижение уровня антикоагуляции;

  • изменение активности препаратов, взаимодействующих с ПА.

  • Зависимость антикоагулянтного эффекта от характера диетического режима (в частности, потребления витамина К).

  • Ежегодный риск кровотечений:

  • всех-6%;

  • больших-2%;

  • летальных - 0,8%.

  • Узкое “терапевтическое окно”.

  • Эмбриотоксичность в течение первого триместра беременности.

Интенсивность влияния ПА на синтез коагуляционных факторов Довольно широко варьирует среди различных больных. Более того, у одного и того же больного в ходе лечения антикоагулянтный эффект ПА может отчетливо изменяться. Кроме того, гипокоагуляционный эффект ПА зависит от множества факторов, включающих возраст пациентов, характер заболевания, наличие сопутствующих заболеваний, состояние функции печени и почек, особенности диетического режима (в частности, количество потребляемого витамина К), прием различных лекарственных препаратов, взаимодействующих с ПА, употребление алкоголя или наркотиков и др. Все это аргументирует необходимость строгого контроля коагуляционных тестов в ходе проведения терапии ПА с целью достижения оптимальных уровней гипокоагуляции и снижение риска побочных эффектов (прежде всего, кровотечений).

В 1930 г. Quik предложил коагуляционный тест, в котором устанавливалось время, необходимое для образования сгустка в декальцифицированной плазме в сгусток после добавления кальция и тромбопластина. Предлагалось, что единственный плазменный фактор протромбин (фактор II) является решающим (критическим) в формировании сгустка, в связи с чем этот тест и получил название -протромбиновое время (ПВ). В последующем ПВ стало коагуляционным тестом выбора для мониторирования пероральной антикоагулянтной терапии и остается таковым в клинической практике в нашей стране. Сегодня установлено, что ПВ реагирует на 3 из четырех К-зависимых факторов свертывания - протромбин, фактор VII и X, а не только на депрессию протромбина (фактор II). По современным представлениям, ПВ не может считаться достаточно надежным показателем адекватной гипокоагуляции при терапии ПА. Как известно, при определении ПВ в качестве одного из основных реагентов используется тромбопластин, биологическая активность которого существенно варьирует от тканевого происхождения и технологии приготовления, что значимо влияет на показатели ПВ у больных, получавших ПА. Использование в лабораториях тромбопластинов различной чувствительности затрудняет подбор оптимальных дозировок ПА, что снижает эффективность терапии и существенно повышает риск геморрагических осложнений. Предложение использования протромбинового отношения (протромбинового индекса), отражающего отношение ПВ больного, получающего ПА, к ПВ нормальной (контрольной) плазмы, оказалось не в состояние устранить описанные выше недостатки. Так как ПВ “неантикоагулируемой” крови незначительно варьирует при использовании различных тромбопластинов; в то же время, значения ДІВ “антикоагулируемой” крови существенно разнятся при применении

тромбопластинов различной активности.

Крупным лабораторным достижением, существенно повысившим эффективность и безопасность пероральной антикоагулянтной терапии, явилось внедрение в клиническую практику показателя, именуемого “INR - Международное Нормализационное Отношение (MHO)”, позволяющего стандартизировать показатели ПВ в соответствии с международным индексом чувствительности ISI (МИЧ) тромбопластина, что коррегирует влияние тромбопластинов различной активности на ПВ. Эта комбинированная модель одобрена ВОЗ и рекомендована для практического использования.

INR (MHO) == протромбиновый индекс х ISI (МИЧ);

где

INR (MHO) — Международное Нормализационное Отношение;

': Протромбиновый индекс — отношение ПВ больного (в секундах) к ПВ нормальной контрольной плазмы (в секундах);

ISI (МИЧ) — международный индекс чувствительности.

Сегодня многие фармпредприятия комбинируют тромбопластиновые реагенты. За ISI (МИЧ), равной 1,0 , принята активность предоставляемого ВОЗ референтного (стандартного) препарата тромбопластина, полученного из мозга человека. Это позволяет отражать результаты исследования в стандартизованных показателях, т.е. в INR (MHO).

Таким образом, адекватная оценка уровня коагуляции у больного, получающего ПА, может быть достигнута только при использованиии в лабораторном исследовании тромбопластиновых реагентов с известным индексом чувствительности ISI (МИЧ).

В силу экономических причин в большинстве лабораторий нашей страны не обеспечивается необходимое качество определения коагуляционных тестов; до сих пор не внедрено в клиническую практику определение INR (MHO), что существенно затрудняет адекватную оценку уровней гипокоагуляции при лечении ПА. Кроме 'того, подбор оптимальных режимов при лечении ПА также затрудняется в связи с невыполнением пациентом рекомендаций врача, несоблюдением диетического режима, употреблением алкоголя, нерегулярным контролем коагуляционных тестов. ПА взаимодействуют с широким спектром лекарственных препаратов, в результате чего изменяется их антикоагуляционный эффект, что требует более частого изучения коагуляционных тестов. В таблице № 8 представлены препараты и факторы, потенцирующие или ингибирующие антикоагуляционный эффект ПА.

Таблица № 8. Препараты и факторы, потенцирующие или ингибирующие антикоагулянтный эффект ПА, (адаптировано из Hirsh, 1995; Stein, Fuster, 1994)

Потенцируют эффект варфарина

Ингибируют эффект варфарина

(удлинение ПВ, увеличение INR)

(укорочение ПВ, увеличение INR

ПРЕПАРАТЫ:

ПРЕПАРАТЫ:

Аллопуринол

Барбитураты

Амиодарон(кордарон)

Анаболические стероиды

Гризеофульвин Карбамазепин

Витамин Е (мегадозы)

Пенициллин

Дисульфирам

Рифампин

Изониазид

Холестирамин

Кетоконазол

Холестирол

Клофибрат

Метронидазол

Напроксен

Омепразол

Пироксикам

Сульфинпиразол

Тамоксифен

Тироксин

Триметоприм (сульфаметоксазол)

Фенилбутазон

Фенитаин

Флюконазол

Хинидин

Цефалоспорины

Циметидин

Эритромицин

ФАКТОРЫ:

ФАКТОРЫ:

Сниженное потребление витамина К

Повышенное потребление

Уменьшение абсорбции витамина К

витамина К

Заболевания печени

Алкоголь

Тиреотоксикоз

Лихорадки различного генеза

Некоторые препараты (например, аспирин, тиклид, плайикс) могут увеличивать риск развития кровотечений, ассоциированных с приемом ПА, посредством ингибиции тромбоцитарной функции.

Применение ПА в сочетании с приведенными в таблице № 8 препаратами или факторами требует увеличения кратности проведения коагуляционных тестов.

И наконец, в широкой клинической практике мы не располагаем препаратами витамина k| (фитоменадион, конакион, коневит, монодион, фитонадион), являющихся антидотами ПА. Следует отметить, что хорошо известный и доступный препарат викасол (препарат витамина Кз) недостаточно эффективен при расстройствах системы гемостаза, обусловленных передозировкой ПА.

Таким образом, представленные выше данные о ПА позволяют рекомендовать их использование в широкой клинической практике только при реальной возможности осуществления качественного лабораторного контроля (в частности определение INR - MHO), хорошем знании фармакокинетики и фармакодинамики ПА, их побочных действий и возможности оказывать адекватную помощь при передозировке (прежде всего, кровотечениях).

Гепарины Стандартный нефрикциопированный гепарин (НФГ)

На протяжении десятилетий НФГ применяется в широкой клинической практике при различных патологических состояниях, сопровождающихся тромбозом и формированием интраваскулярных тромбов в различных бассейнах циркуляции и камерах сердца, а также при тромбоэмболических осложнениях. При этом НФГ рассматривается как препарат выбора как для лечения многих заболеваний, так и для первичной и вторичной профилактики патологических состояний, обусловленных развитием артериального или венозного тромбоза.

Выделяют пять ведущих механизмов антикоагулянтного эффекта гепарина: 1) соединяясь с антитромбином-ПІ (АтІІІ), гепарин ингибирует активированные коагуляционные факторы; 2) гепарин может соединяться с гепариновым кофактором-2, ингибируя при этом непосредственно тромбин, что, прежде всего, наблюдается при высоких дозировках гепарина у больных, резистентних к нему. При концентрациях гепарина, используемых в клинической практике, это взаимодействие играет несущественную роль; 3) гепарин вмешивается во взаимодействие коагуляционных факторов на тромбоцитарной поверхности; 4) гепарин ингибирует агрегацию тромбоцитов; й 5) гепарин повышает проницаемость сосудистой стенки.

Антикоагулянтный эффект гепарина проявляется главным образом за счет его способности связываться с АтШ и катализировать антикоагулянтный эффект последнего. Для соединения гепарина с АтЩ необходимо наличие специфической пентасахаридной последовательности, содержащей особую глюкозаминовую единицу, которая связывается с лизиновым участком на молекуле АтЩ, продуцируя конформационные изменения, в результате чего на комплексе гепарин/АтШ экспонируется аргинин-реактивный участок. Этот аргининовый участок может затем ингибировать активный центр (serine site) тромбина и ряд других коагуляционных факторов.

Наряду с тромбином (фактор На) комплекс гепарин/АтШ также ингибирует факторы Ха, ХПа и 1Ха. Наиболее чувствительны к инактивации тромбин и фактор Ха. В среднем инактивация тромбина приблизительно в 10 раз превышает ингибицию фактора Ха. Для ингибиции тромбина необходимо соединение гепарина как с АтШ, так и с тромбином (ternary complex formation). Для достижения этого молекула НФГ должна превышать 18 моносахаридных единиц (6000 Д). В то же время, для ингибиции фактора Ха необходимо соединение гепарина только с АтШ. Гепариновые молекулы с менее, чем 18 сахаридными остатками, не способны присоединяться к тромбину и АтШ одновременно, а следовательно, не могут катализировать ингибицию тромбина. Напротив, гепариновые фрагменты с несколькими (5 сахаридными единицами) способны катализировать ингибицию Ха фактора посредством АтШ, демонстрируя этим, что они содержат высоко-аффинную пентасахаридную последовательность. При этом не происходит пролонгации активированного частичного тромбопластинового времени (АЧТВ). Существенная часть гепаринового ингибиторного эффекта на коагуляцию, очевидно, опосредуется ингибицией активированной тромбином активации факторов V и VII. После проявления антикоагулянтного эффекта гепарин/АтШ комплексом, из него диссоциируется гепарин, способный далее активировать другие молекулы АтШ.

Коммерческий стандартный НФГ, обычно получаемый из слизистой легких или тонкого кишечника коров и свиней, представляет гетерогенную смесь высокосульфатированных полисахаридных цепей, молекулярная масса (м.м.) которых варьирует от 2.000 до 30.000 Д (средние значения составляют 12.000 - 15.000 Д). Только '/з часть молекул НФГ имеет специфическую пентасахаридную последовательность, необходимую для связи с АтШ.

Различия в размере/длине, зависящие от числа дисахаридных остатков, а также в заряде и характере сульфатирования определяют функциональную гетерогенность, имеющую место среди гепариновых молекул.

Кроме антикоагулянтных эффектов, представленных выше, гепарин обладает целым рядом неантикоагулянтных механизмов, включающих влияние на проницаемость сосудистой стенки и антипролиферативные эффекты на клетки гладкой мускулатуры сосудов, модулирующие ангиогенез. Эти эффекты не связывают с гепариновыми молекулами, содержащими активную пентасахаридную последовательность, ответственную за соединение с АтШ. Они могут быть ответственны за некоторые осложнения гепариновой терапии, прежде всего, кровотечения.

В связи с плохой абсорбцией в ЖКТ гепарин применяется парентерально - в/в или п/к. В/м введение гепарина сопряжено с опасностью формирования больших гематом. При в/в применении предпочтительней непрерывный путь введения гепарина, позволяющий уменьшить нежелательные колебания его концентрации в плазме, а следовательно, повысить эффективность терапии и снизить риск кровотечений. После поступления НФГ в циркуляцию он неспецифически связывается с различными плазменными протеинами, с протеинами сосудистого матрикса, а также с эндотелиальными клетками, макрофагами и тромбоцитами. Плазменные протеины конкурируют с АтШ в соединении с НФГ, что уменьшает способность гепарина взаимодействовать с его кофактором. Результатом описанных выше неспецифических взаимодействий НФГ является снижение его биодоступности при небольших концентрациях, а также вариабельность антикоагулянті юго ответа на фиксированные дозировки препарата у различных больных и развитие лабораторного феномена гепариновой резистентности.

Очищение (клиренс) гепарина происходит посредством двух механизмов - быстрого и медленного. Быстрая фаза очищения гепарина (механизм насыщения) является результатом его соединения с эндотелиальными клетками, макрофагами и плазменными протеинами, в результате чего он метаболизируется. Медленный механизм очищения гепарина является в основном почечным. Удельный вес быстрого и медленного механизмов очищения гепарина определяется дозировками и молекулярными размерами его цепей. При малых дозировках НФГ его элиминация осуществляется преимущественно быстрым механизмом, возможности которого, однако, ограничены. В связи с этим при более высоких дозировках гепарина быстрый механизм оказывается неспособным его элиминировать, в связи с чем очищение препарата осуществляется преимущественно почечным (медленным) механизмом.

Целый ряд фармакокинетических, биофизических и биологических свойств НФГ, которые рассматриваются нами ниже, оказывает неблагоприятное влияние на эффективность терапии, затрудняет подбор оптимальных дозировок препарата и повышает риск развития побочных эффектов, в том числе и жизнеопасных.

К таким фармакокинетическим свойствам относится неспецифическое соединение НФГ с плазменными белками, макрофагами и эндотелиальными клетками. Вследствие высокой отрицательной заряженности НФГ неспецифически соединяется с различными плазменными протеинами, включающими гликопротеины, витронектин, липопротеины, фибронектин и фибриноген, а также с белками, секрети ру ем ым и тромбоцитами (тромбоцитарный фактор 4 и ФВ) и с белками, секретируемыми эндотелиальными клетками (ФВ). Некоторые из перечисленных выше белков являются острофазовыми реагентами, в связи с чем уровни их повышаются при различных воспалительных процессах. Такое соединение НФГ с белками уменьшает его количество, способное катализировать АтІІІ, а следовательно, снижает антикоагулянтную активность препарата. Кроме того, во время тромбообразования происходит освобождение из тромбоцитов и эндотелиальных клеток тромбоцитарного фактора 4 и ФВ соответственно, с которыми связывается гепарин.

Широкая вариабельность плазменных уровней белков, связывающихся с гепарином, у больных с тромбозами и тромбоэмболиями обусловливает непредсказуемость антикоагулянтного ответа на НФГ, а также необходимость в ряде ситуаций применения очень высоких дозировок препарата для достижения оптимальной гипокоагуляции (т.е. развития феномена гепариновой резистентности).

Неспецифическое соединение НФГ с белками и клетками, а также плохо прогнозируемая скорость его элиминации из плазмы требуют постоянного мониторирования лабораторных тестов коагуляции, в частности, АЧТВ, для достижения и поддержания оптимальной гипокоагуляции.

К биофизическим свойствам НФГ, ограничивающим его эффективность, относится неспособность комплекса гепарин-АтШ инактивировать тромбин, связанный с фибрином, и тромбин, экспонированный на субэндотелиальный матрикс, а также фактор Ха, связанный с фосфолипидными поверхностями в протромбиназном комплексе. По мнению Hirsh, Hamilton (1998), такая неспособность НФГ инактивировать связанный тромбин и связанный фактор Ха может объяснить его ограниченную эффективность при нестабильной стенокардии, коронарной ангиопластике и коронарном тромболизисе.

К биологическим свойствам НФГ, создающим нередко серьёзные проблемы при применении, относятся его способность вызывать кровотечения (в том числе и жизнеопасные), а также тромбоцитопению и остеопороз.

Частота гепарин-индуцированной тромбоцитопении (ГИТ) в различных сообщениях довольно варьирует от 3 до 10%. По данным недавно опубликованного рандомизированного исследования, частота ГИТ при применении НФГ составила 3%. Развитие ГИТ представляется следующим образом - при связывании гепарина с тромбоцитами происходит активация тромбоцитов и освобождение тромбоцитарного фактора 4. Гепарин формирует комплексы с последним и стимулирует формирование антител к структурам тромбоцитов, вследствие чего и развивается ГИТ. Тромбоцитопения обычно развивается на 5 - 15 дни после начала применения НФГ (в среднем на 10 день). Вместе с тем, у лиц ранее принимавших гепарин, развитие тромбоцитопении может иметь место уже через несколько часов после введения НФГ. Приблизительно у 20% больных с ГИТ наблюдается артериальный или венозный тромбоз, развитие которого связывают с активацией тромбоцитов, индуцируемой описанным выше иммунологическим механизмом.

Остеопороз является одним из осложнений длительной терапии НФГ. В недавних исследованиях показано снижение костной плотности У /з больных, принимавших НФГ более 3х месяцев, а в 2%-3% случаев при этом наблюдалось развитие спонтанных переломов костей.

Низкомолекулярные гепарины (НМГ)

Описанные выше недостатки НФГ и центральная роль тромбина в тромбогенезе обусловили интенсивные поиски новых антикоагулянтов, среди которых, по мнению многих авторов, особенно многообещающими являются НМГ и прямые ингибиторы тромбина, действующие независимо от атііі и соединяющиеся непосредственно с тромбином.

Технология получения НМГ путем деполимеризации стандартного гепарина была впервые разработана в конце 70-х годов XX века Лабораторией Шоаи (Choay), входящей в настоящее время в состав компании “Санофи-Синтелабо”. Результатом этого явилось внедрение на рынке с середины 80-х годов Фраксипарина (надропарина кальция) и других НМГ.

НМГ являются фрагментами НФГ, продуцируемыми посредством химической или энзиматической деполимеризации. Размер этих фрагментов составляет приблизительно '/з размера молекул НФГ. Подобно НФГ, НМГ гетерогенен в отношении м.м., составляющей от 1.000 до 10.000 Д (средняя м.м. - 4.000-6.500 Д). Деполимеризация НФГ обусловливает изменения в фармакокинетическом и антикоагулянтном профиле фракций низкой м.м. В таблице № 9 представлены характеристики НФГ и НМГ.

НМГ продуцируют антикоагулянтный эффект посредством связи с атііі через ту же уникальную пентасахаридную последовательность, что и НФГ.

Таблица № 9. Характеристики стандартного НФГ и НМГ

Характеристики

Стандартный НФГ

НМГ

Средняя м.м. (Д)

12.000-15.000

4.000-6.500

Число сахаридных единиц

40-50 (среднее число — 45)

13-22 (среднее число- 15)

Активность в отношении ингибиции факторов Ха: На

1 : 1

От2: 1 до 4:1

Связь с: Плазменными белками Белками матрикса сосудистой стенки Эндотелиальными клетками и макрофагами

++

+ + +

Биодостунность при п/к введении малых дозировок

+ (-30%)

+++ (-100%)

Связь с тромбоцитами

++

+

Ингибиция тромбоцитарной функции

+++

++

Элиминация

Посредством связи с Эндотелиальными клетками и макрофагами с последующей деполимеризацией, а также почечными

В основном почечными механизмами

механизмами.

Период полувыведения после однократного в/в введения

Около 60 мин.

Около 1,5-4,5 ч.

Повышение сосудистой проницаемости

+++

+

усиление микрососудистого Кровотечения в эксперименте

+++

+