Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (28).docx
Скачиваний:
24
Добавлен:
03.03.2016
Размер:
93.98 Кб
Скачать

Цветные реакции на аминокислоты.

Аминокислоты, входящие в состав белков, можно выявить при помощи универсальной цветной реакции с нингидрином. В присутствие этого соединения все аминокислоты дают синее окрашивание, чем и пользуются для проявления аминокислот при хроматографическом анализе. Кроме того, имеются цветные реакции на отдельные аминокислоты: реактив Миллона на тирозин (смесь соли окиси и закиси ртути), реактив Адамкевича на триптофан (смесь глиоксиловой и серной кислот), реакция Фоля на цистеин (уксуснокислый свинец в щелочной среде), реактив Паули на гистидин (сульфоновая и азотистые кислоты) и др.

СТРОЕНИЕ БЕЛКОВЫХ ВЕЩЕСТВ.

Вопрос о строении белковых веществ впервые был поставлен А.Я.Данилевским в 1888 г. Он высказал предположение, что аминокислоты соединяются в белках по типу пептидов, т.е. за счёт своих аминных и карбоксильных групп.

Данилевский считал, что белки состоят из полипептидных цепей, которые в свою очередь соединяются между собой за счёт дополнительных связей, благодаря чему они обладают большой прочностью. Этими дополнительными связями могут быть связи за счёт сульфигидридных групп цистеина, за счёт гидроксильных и карбоксильных групп оксикислот - тиразина, серина и др. и, наконец, за счёт водородных атомов, присоединённых к азоту.

Атомы, водорода, согласно схеме, как бы распределяются между атомом кислорода одной пептидной цепи и атомом азота - другой и таким образом связывают полипептиды друг с другом в виде мостиков из водорода. Из известных нам 22 аминокислот может получиться огромное количество различных белковых веществ у живых организмов. Отдельные белки, встречающиеся в организмах, отличаются один от другого не только составом аминокислот, но и порядком их сочетания.

В 1902 г. Фишер подтвердил теорию А.Я.Данилевского о том, что аминокислоты связаны между собой именно по типу кислотных амидов (─CO─NH).Впоследствии Фишер и Абдергальден произвели синтез полипетидов вне организма, пользуясь хлорангидридами аминокислот. Они получили полипептид, состоящий из 19 аминокислот. Это соединение, хотя и давало биуретовую реакцию, не обладало всеми свойствами природных белков. А.Я.Данилевский также получил белковоподобное соединение, но в отличие от Абдергальдена и Фишера он использовал не чистые аминокислоты, а пептоны, образовавшиеся при гидролизе белка.

Несмотря на большие успехи в области изучения строения белковых молекул, мы в настоящее время ещё не знаем точной структуры их, а потому до сих пор никому не удалось получить искусственный белок.

Различают видовую и тканевую специфичность белков, т.е. различают белковые вещества у разных видов животных и белковые вещества различных тканей у одного и того же животного. Например, аминокислотный состав белковых веществ различных животных неодинаков.

Эти три белка - фибриноген, гемоглобин и казеин - отличаются один от другого процентным содержанием тех или иных аминокислот, кроме того, эти белки могут отличаться и порядком сочетания аминокислот в молекулах. При однаковом количестве аминокислот в белке они могут в разной последовательно соединяться между собой. Как архитектор из одинакового количества кирпичей может построить разной формы здания, так и природа из одинакового количества аминокислот может построить различные белковые молекулы.

ВАЖНЕЙШИЕ  ПРОСТЫЕ БЕЛКИ  (ПРОТЕИНЫ) ПРОТАМИНЫ И ГИСТОНЫ[c.50]     ГистоныГистоны являются основными белками (менее щелочными, чем протамины), входящими в состав соматических клеток. У высших организмов нуклеогистоны составляют основной компонент хромосом. Существует несколько типов гистонов. Их молекулярный вес лежит в пределах от 10 000 до 20 000. По-видимому, гистон имеет свою собственнуювторичную структуру. Поскольку ДНК в комплексе с гистоном не может служить затравкой при синтезе РНК, было высказано предположение, 1тогистоны каким-то образом регулируют активность гена. Изучение протаминов и гистонов  находится еще в самой начальной стадии.[c.358]     Аргинин является незаменимой аминокислотой , содержащейся во всех белках, особенно ее много в протаминах и гистонах.[c.422] Протамины и     гистоны представляют большой интерес потому, что они, как мы увидим, являются составной частью многих важных сложных белков (нуклеопротеидов), входящих в состав клеточных ядер. Отсюда понятно, почему протамины и гистоны  удается наиболее легко получать из тканей, богатых ядерным веществом, в частности из железистых тканей. В сперме рыб протамины встречаются и в свободном состоянии.[c.50]     Нуклеиновые кислоты содержат многочисленные остатки фосфорной кислоты, в связи с чем они обладают отчетливо выраженными кислотными свойствами и могут образовывать с белками солеобразные соединения. Вопрос об образовании и свойствах искусственных нуклеопротеидов уже обсуждался в гл. XI. Благодаря наличию кислотных свойств нуклеиновые кислоты соединяются в первую очередь с основными белками, в частности с протаминами и гистонами. И те и другие найдены главным образом в ядрах, и до сих пор еще неясно, содержатся ли они также и в цитоплазме. Интерес представляет тот факт, что ядра содержат либо протамины, либогистоны , но никогда не содержат оба этих белка одновременно [65].[c.393] На основании     рентгеноструктурного анализа и правил Чаргаффа в 1953 г. Уотсон и Крик предложили двуспиральную модель строения ДНК (вторичная структура). Молекула ДНК построена из двух анти-параллельных полинуклеотидных цепей, образующих правую спираль(описано пять вариантов А-Е и Z-фopмa — левая спираль). Обе цепи удерживаются между собой водородными связями междукомплементарными парами оснований (А-Т — две водородных связи, Г-Ц — три водородных связи). Углеводно-фосфорные остовы обеих цепей обращены наружу, а основания — внутрь спирали плоскости оснований параллельны и между ними имеется гидрофобное взаимодействие(стэкинг-взаимодействие). Вдоль оси отдельной цепи на каждые 0,34 нм приходится один мононуклеотид, шаг спирали 3,4 нм, в один виток укладывается 10 нуклеотидных остатков, диаметр спирали 2 нм. Отрицательно заряженные фосфатные группы, во-первых, образуют два спиральных желобка — малый и большой во-вторых, отталкиваются и стремятся вытянуть цепь ДНК. Именно поэтому в реальной клетке ДНК связана с положительно заряженными белками (протамины и гистоны) иполиаминами (сперминспермидин). Структура ДНК может изменяться в зависимости от ионного микроокружения  в клетке.[c.292] Протамины были найдены в клетках спермы рыб, а     гистоны — в ядрах ядерных эритроцитов [66]. Соединения этих веществ с нуклеиновыми кислотами экстрагируются из клеток 1 М раствором хлористого натрия. При диализе полученных экстрактов протамины диффундируют через полупроницаемую мембрану, а нуклеиновые кислоты остаются внутри диализатора [67]. В состав соединений нуклеиновых кислот с протаминами и гистонами в большинстве случаев входит дезоксирибонуклеиновая кислота. Рибонуклеиновая кислста была найдена в той части ядра, которая не растворяется в 1 М растворе хлористого натрия. Эта рибонуклеиновая кислота связана не с протаминами или гистонами , а с истинными белками [68, 69].[c.393] Нуклеопротеиды — самые     сложные вещества в природе. Этосоединения белков (протеинов) с полинуклеотидами, т. е. нуклеиновыми /сысло/ гал и (см. стр. 532), содержащиеся в клеточных ядрахструктурных элементах цитоплазмы. Чаще всего с нуклеиновыми кислотами соединены протамины и гистоны . Они присутствуют во всех без исключения живых организмах.[c.442] Основные (щелочные) белки — это протамины и     гистоны,, которые содержат много основных аминокислот лизина, гистидина н особенно аргинина. Протамины н гистоны образуют с нуклеиновыми кислотами нуклеопротеидыДругие белки могут содержаться в ядре в виде самостоятельной фазы. Ядрышко состоит из больших гранул, которые по размеру близки к рибосомам (диаметр их 15 нм) и содержат большое количество РНК. Основное вещество ядра называется н у к л е о-плазмой, В ядре находятся хромосомы — носители наследственности, Хромосомы имеют хроматиновые структуры, основными компонентами  которых являются ДНК и РНК.[c.56] Основной характер протаминов и     гистонов обусловлен присутствием в них большого количества диаминокислот аргинина, гистидина и лизина. Кислотные свойства нуклеиновых кислот зависят от диссоциации имеющихся в них остатков фосфорной кислотыНуклеиновые кислотыпредставляют собой высокомолекулярные соединения, построенные из большого количества мононуклеотидовНуклеиновые кислоты в зависимости от входящего в их состав углевода — рибо-зы или дезоксирибозы — носят соответствующие названия — рибонуклеиновая кислота, или РНК, и дезоксирибонуклеиновая кислота, или ДНК.Рибонуклеиновая кислота  (РНК) содержится преимущественно в протоплазме клеток (в рибосомах, митохондриях, гиалоплазме) и в небольшом количестве находится в ядре и ядрышке. Дезоксирибонукледновая кислота (ДНК) содержится преимущественно в я [c.45] Н у к л е о п р о т е и д ы. Построены из нуклеине- /-ве.иговые молекулы 2-пу-вых кислот и     основных белков (протаминов и гистоновстоепространство 0 40 А (мо-являются существенными составными частямихромосом. мет аллои) /-иу шо Гкн-К нуклеопротеидам относятся инфекционные вирусы (вирус слотатабачной мозаики , нолиомиэлита и др.) некоторые из них[c.399] Протамины и     гистоны. Данная группа белков отличается рядом характерных физико-химических свойств, своеобразием аминокислотного состава и представлена в основном белками с небольшой молекулярной массой. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Так,сальминвыделенный из молок семги, состоит на 85% из аргинина. Высоким содержанием аргинина отличается другой хорошо изученныйбелок—клу-пеин, выделенный из молок сельди из 30 аминокислот в нем на долю аргинина приходится 21 остаток. Расшифрована первичная структураклу-пеина. Протамины хорошо растворимы в воде, изоэлектрическая точкаих водных растворов находится в щелочной среде. По современным представлениям, протамины скорее всего являются пептидами, а не белками, поскольку их молекулярная масса не превышает 5000. Они составляют белковый компонент в структуре ряда  сложных белков.[c.73] Белки, обладаюшие основным характером, т. е. несущие    положительный заряд, как, аапри ер, протамины и гистоны, хорошо осаждаются алкалоидными реактивами в нейтральной среде  без подкисления.[c.43] Белки осаждаются, если убрать оба     фактора устойчивости белковой молекулы — заряд и гидратную оболочку. Это обеспечивается нагреванием при достижении изоэлектрической точки. Для больщинст-ва белков изоэлектрическая точка соответствует слабокислой среде (pH около 5,0). Протамины и гистоны имеют изоэлектрическую точку в щелочной среде(pH около 8,0). Кроме pH среды важную роль в осаждении белков  при нагревании играет концентрация солей.[c.27] Протамины и.     гистоны. Отличаются высоким содержаниемдиаминокислот, отсутствием серусодержащих ампнокнслот и ограниченным числом аминокислот, входящих в их состав. Белки основногохарактера с небольшим, сравнительно с другими белкамимолекулярным весом. Они растворимы в воде и разбавленных кислотах и осаждаются из растворов при добавлении аммиака, щелочей или белков. К протаминам относятся белки, выделенные из спермы рыб (клупеинсальмин, стурнн и др.), где они находятся в соединении с нуклеиновыми кислотами. Протамины, растворяясь в воде, дают щелочные растворы, не коагулирующие при нагревании они содержат до 87% аргинина. Основной характер у них более резко выражен, чем у гистоновГистоны содержат около 20—30% диаминокислот, обладают ясно выраженным основным характером, в клетках животных находятся в виде соединений снуклеиновыми кислотами  или пигментами (в составе нуклеопротеидов и хромопротеидов).[c.175] П р о т а м и и ы и     гистоны являются наиболее простыми белками. Они отличаются от других белков тем, что имеют слабош елочной характер. Вследствие этого, первые исследователи рассматривали протамины игистоны не как белковые вещества, а как особые органические основания, близкие к растительным алкалоидам. Впоследствии стало известно, чтощелочной характер этих ,белков обусловлен тем, что в состав их молекулы входят преимущественно аминокислоты—л и з и н, а р г и и и и и гистидин, обладающие основными свойствами.Количество содержащихся в протаминах диаминокислот доходит до 80% и более.

Альбумины — белки, растворимые в воде и осаждающиеся в насыщенном растворе сульфата аммония; характеризуются относительно небольшим молекулярным весом (15000— 65000). В плазме крови человека содержится в среднем 43 г/л альбуминов; они обусловливают 80% онкотического давления крови (см. Осмотическое давление). Соединения альбуминов с катионами металлов называют альбуминатами. При ряде заболеваний (нефроз, нефрит и пр.) альбумины из крови переходят в мочу (см. Протеинурия), при этом, если процессы синтеза не компенсируют убыли альбуминов в крови, снижение онкотического давления крови приводит к отекам тканей. См. также БелкиГлобулины.

Альбумины (от лат. albumen, albuminis — белок) — представители природных белков. В отличие от глобулинов, обладают свойством растворяться в чистой воде и разбавленных растворах кислот, щелочей и солей. Из водных растворов альбуминов осаждаются сернокислым аммонием только при полном насыщении раствора (в отличие от других белков, осаждаемых при меньшей концентрации этой соли). А. осаждаются также спиртом, а при нагревании растворов до t° 75° свертываются. Альбумины широко распространены в живых организмах. Типичные представители А.: альбумин сыворотки крови, лактальбумин сыворотки молока, овоальбумин яиц. В плотных тканях организма человека содержание А. относительно невелико (не превышает 5—10% всех белков); в сыворотке крови содержание их гораздо больше и составляет в норме 55—60% всех ее белков (3,3—4,0% веса сыворотки). А. сыворотки крови образуются только в печени, откуда постоянно переходят в кровяное русло. Количество альбуминов в сыворотке, таким образом, в значительной степени зависит от интенсивности биосинтеза их в печени. Физиологическая роль А. сыворотки очень велика: эти белки во многом определяют не только свойства самой сыворотки, но и ряд процессов обмена в организме в целом. Благодаря своему сравнительно небольшому молекулярному весу (65 000) они оказывают большое влияние на осмотическое и онкотическое давление крови и, следовательно, на обмен воды между нею и тканями. При более или менее выраженном уменьшении содержания альбумина в сыворотке крови способность последней удерживать воду снижается, что ведет к повышенному переходу воды из сыворотки во внеклеточное пространство тканей, т. е. к возникновению отеков. Особенностью всех А., в первую очередь сывороточного, является способность образовывать комплексы с очень большим количеством других соединений. Практически в сыворотке крови альбумины всегда содержатся в виде комплексов с различными катионами и анионами, липидами, углеводами, пигментами, гормонами и т. п. Благодаря образованию этих комплексов осуществляется перенос кровью многих соединений из одного органа в другие, а также регулирование влияния ряда веществ на процессы жизнедеятельности организма. Так, например, транспорт кровью почти не растворимого в воде чистого билирубина возможен потому, что большая часть его в крови образует хорошо растворимое соединение с А. Связывание альбуминов и ионов кальция в виде неионизированного соединения играет очень большую роль в поддержании постоянной концентрации в сыворотке крови ионов кальция, оказывающих многообразное влияние на функции различных органов и тканей. Такую же роль играет образование комплексов А. с тироксином, гормонами коры надпочечников, половыми и т. д. Уменьшение содержания А. в сыворотке крови, наблюдающееся при очень многих заболеваниях, особенно при хронических инфекционных процессах, поражениях печени и почек, травмах костной системы, после тяжелых операций, может поэтому вызвать значительные вторичные изменения в обмене различных веществ в организме больного и наложить отпечаток на течение основного заболевания. Борьба с возникшей гипоальбуминемией (введение растворов альбуминов, сыворотки крови, соответствующая диета) является поэтому необходимым терапевтическим мероприятием при всех патологических состояниях, сопровождающихся более или менее выраженным уменьшением содержания А. в сыворотке крови.

 В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах.

a1-ГЛОБУЛИНЫ

            В эту фракцию входят разнообразные белки. a1-глобулины имеют высокую гидрофильность и низкую молекулярную массу - поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико.

Функции a1-глобулинов

            1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы - липопротеины. Среди белков этой фракции есть специальный белок,  предназначенный для транспорта гормона щитовидной железы тироксина - тироксин-связывающий белок.

            2. Участие в функционировании системы свертывания крови и системы комплемента - в составе этой фракции находятся также некоторые факторы  свертывания  крови  и компоненты  системы  комплемента.

            3. Регуляторная функция. Некоторые белки фракции a1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме  концентрация a1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса - 58-59 кДа. Главная его функция - угнетение эластазы - фермента, гидролизующего эластин (один из основных белков соединительной ткани). a1-антитрипсин также является ингибитором протеаз:   тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. Количество этого белка увеличивается при воспалительных заболеваниях, при процессах клеточного распада, уменьшается при тяжелых заболеваниях печени. Это уменьшение - результат нарушения синтеза a1-антитрипсина, и связано оно с избыточным расщеплением эластина. Существует   врожденная недостаточность a1-антитрипсина. Считают, что недостаток этого белка  способствует  переходу острых заболеваний в хронические.

            К фракции a1-глобулинов относят также a1-антихимотрипсин. Он угнетает   химотрипсин и некоторые протеиназы форменных элементов крови.

a2-ГЛОБУЛИНЫ.

            Высокомолекулярные белки. Эта фракция содержит регуляторные белки,  факторы свертывания  крови,  компоненты системы компемента, транспортные белки.  Сюда относится и церулоплазмин. Этот белок имеет 8 участков связывания меди. Он  является переносчиком  меди, а также обеспечивает постоянство содержания меди в  различных тканях, особенно в печени. При наследственном заболевании - болезни Вильсона - уровень церулоплазмина понижается. Вследствие этого повышается концентрация меди в мозге и печени. Это проявляется развитием неврологической симптоматики, а также циррозом печени.

            Гаптоглобины. Содержание этих белков составляет приблизительно 1/4 часть от всех a2-глобулинов. Гаптоглобин образует специфические комплексы с гемоглобином, освобождающимся из эритроцитов при внутрисосудистом гемолизе. Вследствие  высокой  молекулярной  массы этих комплексов они не могут выводиться почками. Это предотвращает потерю железа организмом.

            Комплексы гемоглобина с гаптоглобином разрушаются клетками ретикуло-эндотелиальной системы (клетки системы мононуклеарных фагоцитов), после чего глобин расщепляется до аминокислот, гем разрушается до билирубина и экскретируется желчью, а железо остается в организме, и может быть реутилизировано. К этой же фракции относится и a2-макроглобулин. Молекулярная масса этого белка 720 кДа, концентрация в плазме крови 1.5-3 г/л. Он является эндогенным ингибитором протеиназ всех классов, а также связывает гормон инсулин. Время полужизни a2-макроглобулина очень малое - 5 минут. Это универсальный “чистильщик” крови, комплексы “a2-макроглобулин-фермент” способны сорбировать на себе иммунные пептиды, например, интерлейкины, факторы роста, фактор некроза опухолей, и выводить их из кровотока.       

С1-ингибитор - гликопротеид, является основным регуляторным звеном в классическом пути активации комплемента (КПК), способен угнетать плазмин, калликреин. При недостатке С1-ингибитора развивается ангионевротический отек.

b-ГЛОБУЛИНЫ

            К этой фракции относятся некоторые белки системы свертывания крови и подавляющее большинство компонентов системы активации комплемента (от С2 до С7).

            Основу фракции b-глобулинов составляют Липопротеины Низкой Плотности (ЛПНП) (Подробнее о липопротеинах: смотрите лекции “Метаболизм липидов»).

            C-реактивный белок . Содержится в крови здоровых людей в очень низких концентрациях ,менее 10 мг/л. Его функция неизвестна. Концентрация  С-реактивного белка значительно  увеличивается  при  острых  воспалительных заболеваниях. Поэтому С-реактивный белок  называют белком "острой фазы" (к белкам острой фазы относятся также альфа-1-антитрипсин, гаптоглобин).

                                                            гамма-ГЛОБУЛИНЫ

            В этой фракции содержатся в основном АНТИТЕЛА - белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента.

            Функция антител - защита организма от чужеродных агентов  (бактерии,  вирусы,  чужеродные белки), которые называются АНТИГЕНАМИ.

            Главные классы антител в крови:

            - иммуноглобулины G (IgG)

            - иммуноглобулины M (IgM)

            - иммуноглобулины A (IgA), к которым относятся IgD и IgE.

            Только IgG и IgM способны активировать систему комплемента. С-реактивный белок также способен связывать и активировать С1-компонент комплемента, но эта активация непродуктивна и приводит к накоплению анафилотоксинов. Накопившиеся анафилотоксины вызывают аллергические реакции.

            К группе гамма-глобулинов относится также криоглобулины. Это белки, которые способны  выпадать  в  осадок  при  охлаждении  сыворотки.  У здоровых  людей  их  в  сыворотке  нет.  Они  появляются  у больных с ревматическим артритом,    миеломной    болезнью.

            Среди   криоглобулинов   существует белок фибронектин. Это высокомолекулярный  гликопротеин (молекулярная масса 220 кДа). Он присутствует  в  плазме крови  и  на поверхности многих клеток (макрофагов, эндотелиальных   клеток,    тромбоцитов,    фибробластов).    Функции фибронектина: 1. Обеспечивает взаимодействие клеток друг с другом;  2. Способствует адгезии тромбоцитов; 3. Предотвращает    метастазирование   опухолей. Плазменный фибронектин  является  опсонином  -  усиливает  фагоцитоз. Играет  важную роль  в очищении крови от продуктов распада белков,  например, распада коллагена.  Вступая в связь  с  гепарином , участвует  в  регуляции процессов  свертывания  крови.  В  настоящее  время этот белок широко изучается и используется для  диагностики  особенно  при  состояниях, сопровождающихся   угнетением  системы  макрофагов  (сепсис  и  др.)

            Интерферон - это гликопротеин.  Имеет молекулярную массу около 26 кДа.  Обладает видовой специфичностью. Вырабатывается в клетках в ответ на внедрение в них вирусов.  У здорового человека его концентрация  в плазме   мала.   Но   при   вирусных  заболеваниях  его  концентрация увеличивается.

Глютелины — растительные белки, не растворимые в нейтральныхсолевых растворах и в этиловом спирте растворяются только в разбавленных (0,2%) растворах щелочей. Содержатся главным образом в семенах злаков. Изучены мало . Глютелины некоторых злаков называют глютенинами (от франц. gluten — клейковина). Наиболее изучен глютенин пшеницы.[c.297] В табл. 20 приведен     состав белковых веществ ячменя и солода. Из нее видно, что наиболее сильному гидролизу подвергается гордеин, несколько меньшему — глютелин количество альбумина и глобулина почти не изменяется. Одновременно в 4—5 раз увеличивается содержание аминокислот. О их составе некоторое представление может дать анализячменя и пивоваренного солода  (табл. 21, по Сандегрену).[c.133]     Культура зерна Альбумины Глобулины  Проланпны Глютелины[c.8] У злаковых в матрице     белковых телец содержатся проламины (глиадин, гордеин, авенин, зеин) и в несколько большем количествеглютелины, соединенные с глобулинами и альбуминами [41, 75, 61, 63, 121, 77, 115, 3, 53, 74]. В зерновке риса [107] были выявлены белковые тельцадвух  типов, различающихся по плотности. Одни содержали проламины, а другие — глютенины.[c.133]     Согласно классификации, которую дает Осборн, белки бобовых в основном представлены глобулинами (60—90 %) и альбуминами (10—20%). Как указывает Боултер [11], некоторые виды  содержат, кроме того, фракцию глютелина (до 15 %), до настоящего времени слабо изученную.[c.150] Формирование     клейковины пшеницы. Замешивание теста из муки сочень малым количеством воды (0,6—1 л на 1 кг сухой муки) приводит ксоединению белков пшеницы, которые образуют фибриллы. После периода покоя белки принимают структуру сети в этом минимальном количествеводы. Данное явление наблюдали в электронный микроскоп и описали Бернардэн и Казарда (11,12]. Оно,. видимо, обусловлено возникновениемдисульфидных мостиков и водородных связей внутри и между молекулами, в которых липиды играют заметную роль. Эти данные подтверждают ранее выдвинутые гипотезы и дополняют их (см. главу 6). В самом деле, лишь нативная клейковина обнаруживает вязкоупругие свойства, возникающие при этом и противостоящие механическим воздействиям. Если глиадины или глютелины извлекают раздельно, то их свойства различны то же происходит при извлечении липидов. В этих условиях приготовлениепищевой клейковины из пшеницы отличается от приготовления других белковых изолятов.[c.487] Белок     пшеничного зерна можно разделить, пользуясь различными растворителями, на фракции. Наиболее резко выражены четыре фракции, выделяемые из белка пшеницы альбуминов — водорастворимых белков глобулинов — солерастворимых проламинов или глиадинов, растворимых е спирте, и глютелинов, или глютенинов, растворимых в очень слабых водных растворах  щаточей.[c.32]

Альбуминоиды (протеиноиды, склеропротеины) — белки, резко отличаюпще-ся от других белков по свойствам. Они растворяются лишь придлительной обработке концентрированными кислотами п щелочами, причем с расщеплением молекул. В животных организмах выполняют опорные и покровные функции в растениях не встречаются. Представители фиброин— белок шелка кератин — белок волос, шерсти, рогового вещества,эпидермиса кожи эластин — белок стенок кровеносных сосудов, сухожилий коллаген — белковое вещество  кожи, костей, хрящей, соединительных тканей.[c.297]     Синтез белков включает ступенчатое присоединение аминокислот в заранее заданной последовательности в настоящее время он ограничивается лишь лабораторным приготовлением относительно простых молекул. Процедура синтеза облегчается, если аминокислота ковалентно связана с водонерастворимым полимером, и этот метод может лечь в основу будущих промышленных процессов получениясинтетического белка (т. 4, стр. 338), Сообщается, что потенциально съедобное вещество образуется в результате статистическойполимеризации аминокислот  в протеиноиды , имеющие молекулярный вес более 8000.[c.611]

Протеиноиды —     нерастворимые белки, входящие в состав шелка, волос, рогов, ногтей, копыт и сухожилий. Имеют нитевидную (фибриллярную) форму молекул . Содержат серу.[c.267] Протеиноиды (    белковоподобные вещества), или альбуминоиды,— твердые белки опорных тканей. Входят в состав волос, рогов, копыт, перьев, сухожилий, связок, соединительной ткани и т. д. Протеиноиды не растворяются в воде, разведенных кислотах, щелочах и солевых растворах. В протеиноидах содержится большое количество  глицина, аланина, тирозина. Многие протеиноиды не пригодны для питания.[c.214] В состав почечной ткани входит около 83% воды и 17% плотного остатка, состоящего по преимуществу из     различных белков  (глобулинов, нуклеопротеидов, протеиноидов и др.).[c.455] К     группе простых белков, или протеинов, обычно относят протамины, гистоны, альбумины, глобулины, проламины, глютелины, протеиноиды и ряд других белков, не принадлежащих ни к одной из перечисленных групп (например, многие белки-ферменты, мышечный белок  миозин и др.).[c.48]     Большое значение имеют различные белки опорных тканей — костной ткани, хрящей, сухожилий, волос, шерсти, шелка и др., объединяемыеобщим названием протеиноидов, т. е. белковоподобных  веществ.[c.52] Особенностью многих протеиноидов является их непригодность для питания вследствие неспособности     пищеварительных соков переваривать их. К таким белкам, не поддающимся действию ферментов пищеварительных соков , относятся, например белки рогов, копыт, шерсти и др.[c.52] Сера входит в состав почти всех     белков тела. Особенно много серы находится в протеиноидах опорных тканей, например в кератине волос, рогах, шерсти и т. д., отличающихся высоким содержанием аминокислоты цистина. Сера встречается также в составе эфиросерных кислот, трипеп-тида глютатиона, витаминов, гормонов (например, в окситоцине) и рядедругих органических соединений , играющих большую роль в обмене веществ.[c.391] Из     отдельных представителей протеиноидов интерес представляетколлаген, входящий в состав соединительной ткани. Простейшим методом получения этого протеиноида является обработка кости разведеннойсоляной кислотой. Минеральные составные части кости переходят при этом в раствор, тогда как на коллаген, как на не растворимое в разведенных кислотах вещество, соляная кислота  заметного действия не оказывает.[c.52] С. Фокс показал [20], что нагреванием из     аминокислот можно получить сополимеры (протеиноиды), содержащие до 18 аминокислот, являющихсямоделями первичного белка. Фокс и Янг нашли, что протеиноид образует врастворе солей характерные микросферы. Они содержат мембраны и дажедвойные слои . Введение в микросферы гидроокиси цинка вызывает появление у них способности расщеплять АТФ. С. Фокс считает, что эти микроструктуры по свойствам напоминают клетки.[c.52] Протеиноиды, альбуминоиды, склеропротеины—    белковые вещества, характеризующиеся большой химической стойкостью и находящиеся в таких частях животного организма (или его выделениях), которые выполняют механические функции. В растениях они не найдены. Кроме сходства физиологических функций, их объединяет и общность других свойств. Так, например, они совершенно нерастворимы в воде и растворах нейтральных солей, а также в разбавленных кислотах и щелочах. Растворить их удается только при энергичной обработке кислотами или щелочами, причем первоначальная структура их испытывает при этом значительные изменения. Не поддаются они действию и протеолитических ферментов, по крайней мере  в обычных условиях.[c.327] Из протеиноидов позвоночных следует отметить коллаген, эластин и кератин. Коллаген представляет главную     составную часть соединительной ткани кожи и сухожилий и основное органическое вещество костей и хрящей. Коллаген устойчив к действию некоторых протеолитических ферментов он расщепляется пепсином, но не трипсином. При действиихолодной воды на указанные ткани коллаген не растворяется его можно перевести в раствор лишь при более высокой  температуре, но при этом строение его изменяется.[c.328] В     группу протеинов, или простых белков, обычно включают также так называемые протеиноиды. Эти вещества имеют лишь некоторые свойствабелков, по ряду же свойств они значительно отличаются от большинства белков, прежде всего малой растворимостью. К протеиноидам относится ряд белков, играющих в организмах животных  и растений опорную, механическую, защитную роль.[c.311] Представителями протеиноидов являются кератин, входящий в     состав кожи, волос (шерсти), ногтей, рогов фиброин, входящий в состав шелка, и т. д. Некоторые из этих белков имеют наиболее простое строение  и изучены больше других белков.[c.311] В работах Фокса (1966—1968)     экспериментально исследоваласьсамоорганизация в полипептидных цепях, образуемых при термической поликонденсации эквимолярных смесей 18 канонических аминокислот(кроме Асп и Глу) в присутствии солей фосфорной кислоты, игравших рольводоотнимающих средств. Прп этом образуются цепи неравномерного состава, синтетические полипептиды, названные Фоксом протеиноидами. Эти соединения обладают каталитической активностью, сходной с ферментативной с их помощью удалось проводить реакции гидролиза, декарбокснлнрования, амннирования и дезаминирования. Однакополимеразная активность  у протеиноидов пе обнаружена.[c.537] Протеиноиды вызывали большой интерес и тщательно изучались выяснилось, что они     способны образовывать мембраны и замкнутые полости, а отдельные микросферы, соединяясь, дают цепочки и более сложные сочетания. По мнению С. Фокса, зоны вулканической деятельности могли быть теми местами, в которых протекал первичный синтез — конденсация протеиноидов. Дожди вымывали эти соединения, выносили их к отмелям рек или морей, где, вероятно, происходили в дальнейшем процессы усложнения протеиноидных  структур.[c.210]