
- •§1. Несобственные интегралы 1-го рода
- •I Определение
- •II Формула Ньютона – Лейбница для несобственного интеграла первого рода
- •II Интегралы от знакопеременных функций
- •§3. Несобственные интегралы 2го рода
- •I Одно свойство определенного интеграла
- •II Определения
- •III Формула Ньютона-Лейбница для несобственного интеграла 2-го рода
- •§4. Признаки сходимости несобственного интеграла 2-го рода
- •§5. Замечания к теме
- •I Об интегралах смешанного типа
- •II о замене переменной в несобственных интегралах
- •§6. Гамма-функция Эйлера
–
Тема НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
В
теме «Определенный интеграл» было
рассмотрено понятие определенного
интеграла
для случая конечного промежутка
и ограниченной функции
(см. теорему 1 из §3). Теперь займемся
обобщением этого понятия для случаев
бесконечного промежутка и неограниченной
функции. Необходимость такого обобщения
показывают, например, такие ситуации.
1.
Если, используя формулу для длины дуги,
попытаться вычислить длину четверти
окружности
,
,
то придем к интегралу от неограниченной
функции:
,
где
.
2.
Пусть тело массой
движется
по инерции в среде с силой сопротивления
,
где
— скорость тела. Используя второй закон
Ньютона (
,
где
ускорение),
получим уравнение:
,
где
.
Нетрудно показать, что решением этого
(дифференциального!) уравнения является
функция
Если
нам потребуется вычислить путь, пройденный
телом до полной остановки, т.е. до момента,
когда
,
то придем к интегралу по бесконечному
промежутку:
§1. Несобственные интегралы 1-го рода
I Определение
Пусть
функция
определена и непрерывна на промежутке
.
Тогда для любого
она интегрируема на промежутке
,
то есть существует интеграл
.
Определение
1.
Конечный или бесконечный предел этого
интеграла при
называют несобственным интегралом 1-го
рода от функции
по промежутку
и обозначают символом
.
При этом, если указанный предел конечен,
то несобственный интеграл называют
сходящимся, в противном случае (
или не существует ) – расходящимся.
Итак, по определению
|
(1) |
Примеры
1..
2..
3.– не существует.
Несобственный интеграл из примера 1 сходится, в примерах 2 и 3 интегралы расходятся.
II Формула Ньютона – Лейбница для несобственного интеграла первого рода
Пусть
— некоторая первообразная для функции
(сущест-вует на
,
т.к.
— непрерывна). Тогда
Отсюда
ясно, что сходимость несобственного
интеграла (1) равносильна существованию
конечного предела.
Если этот предел обозначить
,
то можно написать для интеграла (1)
формулу Ньютона-Лейбница:
,
где
.
Примеры.
4.
.
5.
.
6.
Более сложный пример:
.
Сначала найдем первообразную:
Теперь
можем найти интеграл
,
учитывая,
что
:
.
III Свойства
Приведем ряд свойств несобственного интеграла (1), которые вытекают из общих свойств пределов и определенного интеграла:
интегралы
и
сходятся или расходятся одновременно;
если
, то интегралы
и
сходятся или рас-ходятся одновременно;
если интеграл
сходится, то
.
IV Другие определения
Определение
2.
Если
непрерывна
на
,
то
.
Определение
3.
Если
непрерывна
на
,
то принимают по определению
(
–
произвольное),
причем несобственный интеграл в левой части сходится, если только оба ин-теграла в правой части сходятся.
Для этих интегралов, как и для интеграла (1) можно написать соответствующие формулы Ньютона – Лейбница.
Пример
7.
§2. Признаки сходимости несобственного интеграла 1-го рода
Чаще всего несобственный интеграл вычислить по определению не-возможно, поэтому используют приближенное равенство
(для
больших
).
Однако, это соотношение имеет смысл лишь для сходящихся интегралов. Необходимо иметь методы выяснения поведения интеграла минуя определение.
I Интегралы от положительных функций
Пусть
на
.
Тогда определенный интеграл
как функция верхнего предела есть
функция возрастаю-щая (это следует из
общих свойств определенного интеграла).
Теорема
1.
Несобственный интеграл 1го
рода от неотрицательной функ-ции сходится
тогда и только тогда, когда функция
остается
ограниченной при увеличении
.
Эта теорема – следствие общих свойств монотонных функций. Практического смысла теорема почти не имеет, но позволяет получить т.н. признаки сходимости.
Теорема
2
(1-й признак сравнения). Пусть функции
и
непре-рывны на
и удовлетворяют неравенству
.
Тогда:
1)
если интеграл
сходится, то и
сходится;
2)
если интеграл
расходится, то и
расходится.
Доказательство.
Обозначим:
и
.
Так как
,
то
.
Пусть интеграл
сходится, тогда (в силу теоремы 1) функция
‒ ограничена. Но тогда и
ограничена,
а значит, интеграл
тоже сходится. Аналогично доказывается
и вторая часть теоремы.
Этот
признак не применим в случае расходимости
интеграла от
или сходимости интеграла от
.
Этот недостаток отсутствует у 2-го
признака сравнения.
Теорема
3
(2-й признак сравнения). Пусть функции
и
непрерывны и неотрицательны на
.
Тогда, если
при
,
то несобственные интегралы
и
сходятся или расходятся одновременно.
Доказательство. Из условия теоремы получим такую цепочку равно-сильных утверждений:
,
,
.
Пусть,
например,
.
Тогда:
.
Применим теорему 2 и свойство 1) из §1 и получим утверждение теоремы 3.
В
качестве эталонной функции, с которой
сравнивают данную, высту-пает степенная
функция
,
.
Предлагаем студентам самим доказать,
что интеграл
сходится
при
и расходится при
.
Примеры.
1.
.
Рассмотрим
подынтегральную функцию на промежутке
:
,
.
Интеграл
сходится, ибо
.
По 2-му признаку сравнения сходится и
интеграл
,
а в силу свойства 2) из §1 сходится и
исход-ный интеграл.
2..
Так
как
,
тоcуществует
такое, что при
.
Для таких значений переменной:
.
Известно, что логарифмическая функция растет медленнее степенной, т.е.
,
а значит, начиная с некоторого значения переменной, эта дробь меньше 1. Поэтому
.
Интеграл
сходится как эталонный. В силу 1-го
признака сравнения сходится и
.
Применяя 2-й признак, получим, что и
интеграл
сходится. И снова свойство 2) из §1
доказывает сходимость исходного
интеграла.