
- •Конспект лекций
- •6.050903 “Телекомуникации”
- •1. Эволюция компьютерных систем и сетей
- •1.1. Мультипрограммирование
- •1.2.Многотерминальные системы – прообраз сети
- •1.3.Первые сети – глобальные
- •1.4. Мини-компьютеры – предвестники локальных сетей
- •1.5. Появление стандартных технологий локальных сетей
- •2. Основные проблемы построения компьютерных сетей
- •2.1. Связь компьютера с периферийными устройствами
- •2.2. Связь двух компьютеров
- •2.3. Клиент, редиректор и сервер
- •3. Топология физических связей
- •3.1. Типы конфигураций связи компьютеров
- •4. Адресация узлов сети
- •5. Коммутация
- •5.1.Определение информационных потоков
- •5.2.Маршрутизация
- •5.3.Продвижение данных
- •5.4.Мультиплексирование и демультиплексирование
- •5.5. Разделяемая среда передачи данных
- •5.6. Типы коммутации
- •6. Декомпозиция задач сетевого взаимодействия
- •6.1. Многоуровневый подход
- •6.2. Протокол. Интерфейс. Стек протоколов
- •7. Модель взаимодействия открытых систем - osi
- •7.1. Общая характеристика модели osi
- •7.2. Уровни модели osi
- •8. Структура стандартов ieee
- •9. Протокол llc
- •9.1. Три типа процедур уровня llc
- •9.2. Структура кадров llc
- •10. Технология ethernet
- •10.1. Адресация в сетях Ethernet
- •00-E0-14-00-00-00
- •01-00-0C-cc-cc-cc
- •10.2. Метод доступа csma/cd
- •10.3. Форматы кадров технологии Ethernet
- •10.4. Спецификации физической среды Ethernet
- •10.5. Методика расчета конфигурации сети Ethernet
- •11.Технология 100vg-AnyLan
- •11.1. Общая характеристика технологии 100vg-AnyLan
- •11.2. Структура сети 100vg-AnyLan
- •11.3. Стек протоколов технологии 100vg-AnyLan
- •11.4. Функции уровня mac
- •11.5. Функции уровня pmi
- •11.6. Функции уровня pmd
- •12. Технология fast ehternet
- •12.1. Создание стандарта Fast Ethernet
- •12.2. Структура физического уровня и его связь с mac-подуровнем
- •12.3. Физический уровень 100Base-fx - многомодовое оптоволокно
- •12.4. Физический уровень 100Base-tх - двухпарная витая пара
- •12.5.Физический уровень 100Base-t4 - четырехпарная витая пара
- •12.6. Правила построения сегментов Fast Ethernet при использовании повторителей класса I и класса II
- •13. Технология gigabite ehternet
- •13.1. Хронология разработки стандарта
- •13.2. Архитектура стандарта Gigabit Ethernet
- •13.3. Интерфейс 1000Base-X
- •13.4. Интерфейс 1000Base-t
- •13.5. Уровень mac
- •14. Беспроводные локальные сети (Wi-Fi)
- •14.1. Стек протоколов ieee 802.11
- •Технология уширения спектра
- •Скорость 1 Мбит/с
- •Скорость 2 Мбит/с
- •Cck-последовательности
- •Двоичное пакетное сверточное кодирование pbcc
- •Ортогональное частотное разделение каналов с мультиплексированием
- •14.2.Топологии локальных сетей стандарта 802.11
- •15. Структуризация локальных сетей
- •15.1. Причины структуризации локальных сетей
- •15.2. Физическая структуризация локальной сети
- •15.3.Логическая структуризация сети на разделяемой среде
- •15.4. Алгоритм прозрачного моста ieee 802.1d
- •15.5. Топологические ограничения коммутаторов в локальных сетях
- •16. Дуплексные протоколы локальных сетей
- •16.1. Изменения в работе мас-уровня в дуплексном режиме
- •16.2.Борьба с перегрузками
- •17. Виртуальные локальные сети
- •17.1. Назначение виртуальных сетей
- •17.2. Создание виртуальных сетей на базе одного коммутатора
- •17.3. Создание виртуальных сетей на базе нескольких коммутаторов
- •18. Основные задачи оптимизации сетей передачи данных
- •18.1. Критерии эффективности работы сети
- •18.2. Показатели надежности и отказоустойчивости
- •19. Параметры оптимизации транспортной подсистемы
- •19.1. Влияние на производительность сети типа коммуникационного протокола и его параметров
- •19.2. Влияние на производительность алгоритма доступа к разделяемой среде и коэффициента использования
- •19.3. Влияние размера кадра и пакета на производительность сети
- •19.4. Назначение максимального размера кадра в гетерогенной сети
- •19.5. Время жизни пакета
- •19.6. Параметры квитирования
- •19.7. Сравнение сетевых технологий по производительности: Ethernet, TokenRing, fddi, 100vg-AnyLan, FastEthernet, atm
- •19.8. Сравнение протоколов ip, ipx и NetBios по производительности
- •19.9. Влияние широковещательного служебного трафика на производительность сети
- •19.9.1. Назначение широковещательного трафика
- •19.9.2. Поддержка широковещательного трафика на канальном уровне
- •19.9.3. Широковещательный шторм
- •19.9.4. Поддержка широковещательного трафика на сетевом уровне
- •19.9.5. Виды широковещательного трафика
- •6.050903 “Телекомуникации”
17. Виртуальные локальные сети
Важным свойством коммутатора локальной сети является способность контролировать передачу кадров между сегментами сети. По различным причинам (соблюдение прав доступа, политика безопасности и т. д.) некоторые кадры не следует передавать по адресу назначения.
Такого типа ограничения можно реализовать с помощью пользовательских фильтров. Однако пользовательский фильтр может запретить коммутатору передачу кадров только по конкретным адресам, а широковещательный трафик он обязан передать всем сегментам сети. Так требует алгоритм его работы. Поэтому сети, созданные на основе коммутаторов, иногда называют плоскими — из-за отсутствия барьеров на пути широковещательного трафика. Технология виртуальных локальных сетей позволяет преодолеть указанное ограничение.
Виртуальной локальной сетью (VLAN) – называется группа узлов сети, трафик которой, в том числе и широковещательный на канальном уровне полностью изолирован от трафика других узлов сети.
Это означает, что передача кадров между разными виртуальными сетями на основании адреса канального уровня невозможна независимо от типа адреса — уникального, группового или широковещательного. В то же время внутри виртуальной сети кадры передаются по технологии коммутации, то есть только на тот порт, который связан с адресом назначения кадра.
Виртуальные локальные сети могут перекрываться, если один или несколько компьютеров входят в состав более чем одной виртуальной сети. На рис. 19.1 сервер электронной почты входит в состав виртуальных сетей 3 и 4. Это означает, что его кадры передаются коммутаторами всем компьютерам, входящим в эти сети. Если же какой-то компьютер входит в состав только виртуальной сети 3, то его кадры до сети 4 доходить не будут, но он может взаимодействовать с компьютерами сети 4 через общий почтовый сервер. Такая схема не полностью защищает виртуальные сети друг от друга — так, широковещательный шторм, возникший на сервере электронной почты, затопит и сеть 3, и сеть 4.
Рисунок 17.1. Виртуальные локальные сети
Говорят, что виртуальная сеть образует домен широковещательного трафика, по аналогии с доменом коллизий, который образуется повторителями сетей Ethernet.
17.1. Назначение виртуальных сетей
Основное назначение технологии VLAN состоит в облегчении процесса создания изолированных сетей, которые затем обычно связываются между собой с помощью маршрутизаторов. Такое построение сети создает мощные барьеры на пути нежелательного трафика из одной сети в другую. Сегодня считается очевидным, что любая крупная сеть должна включать маршрутизаторы, иначе потоки ошибочных кадров, например широковещательных, будут периодически «затапливать» всю сеть через прозрачные для них коммутаторы, приводя ее в неработоспособное состояние.
Достоинством технологии виртуальных сетей является то; что она позволяет создавать полностью изолированные сегменты сети, путем логического конфигурирования коммутаторов не прибегая к изменению физической структуры.
До появления технологии VLAN для создания отдельной сети использовались либо физически изолированные сегменты коаксиального кабеля, либо несвязанные между собой сегменты, построенные на повторителях и мостах. Затем эти сети связывались маршрутизаторами в единую составную сеть (рис. 17.2).
Рисунок 17.2.- Составная сеть, состоящая из сетей, построенных на основе повторителей
Изменение состава сегментов (переход пользователя в другую сеть, дробление крупных сегментов) при таком подходе подразумевает физическую перекоммутацию разъемов на передних панелях повторителей или в кроссовых панелях, что не очень удобно в больших сетях — много физической работы, к тому же высока вероятность ошибки.
Для связи виртуальных сетей в общую сеть требуется привлечение сетевого уровня. Он может быть реализован в отдельном маршрутизаторе, а может работать и в составе программного обеспечения коммутатора, который тогда становится комбинированным устройством — так называемым коммутатором 3-го уровня.
Технология виртуальных сетей долгое время не стандартизировалась, хотя и была реализована в очень широком спектре моделей коммутаторов разных производителей. Положение изменилось после принятия в 1998 году стандарта IEEE 802.1Q, который определяет базовые правила построения виртуальных локальных сетей, не зависящие от протокола канального уровня, поддерживаемого коммутатором.