- •Министерство образования и науки украины
- •Введение
- •Краткий исторический очерк развития электротехники
- •Электрическое поле
- •Закон Кулона
- •Электрическое поле и величины, его характеризующие
- •Электрическая емкость конденсаторы
- •Соединения конденсаторов
- •3. Электродвижущая сила
- •Сопротивление и проводимость
- •Закон Ома для электрической цепи
- •Законы кирхгофа
- •II закон Кирхгофа
- •2. Последовательное соединение элементов
- •Электрическая цепь (неразветвленная) с несколькими источниками эдс
- •Сложные электрические цепи постоянного тока
- •Магнитное поле
- •Закон полного тока
- •Применение закона полного тока
- •Намагничивание ферромагнитных материалов
- •Перемагничивание ферромагнетиков Магнитный гистерезис
- •Магнитожесткие и магнитомягкие материалы
- •Магнитные цепи
- •Закон Ома и закон Кирхгофа для магнитных цепей
- •Электромагниты и реле
- •1. Подъемная сила электромагнита
- •2. Устройство и применение магнитных реле
- •3. Поляризованное реле
- •Порядок расчета магнитных цепей
- •Электромагнитная индукция Электромагнитная индукция в прямолинейном проводнике
- •Преобразование механической энергии в электрическую Электрические генераторы
- •Электрические двигатели
- •Понятие о потокосцеплении
- •Понятие об индуктивности
- •Индуктивность кольцевой и цилиндрической катушки
- •Эдс самоиндукции
- •Явление взаимоиндукции
- •Однофазный переменный ток
- •Многополюсные генераторы
- •Действующее и среднее значения переменного тока
- •Коэффициенты формы и амплитуды
- •Начальная фаза. Сдвиг фаз
- •Графическое изображение синусоидальных величин
- •Сложение и вычитание синусоидальных величин
- •Цепи переменного тока с активным сопротивлением
- •Цепи переменного тока с индуктивностью
- •Цепь переменного тока с емкостью
- •Неразветвленная цепь переменного тока с активным сопротивлением и индуктивностью
- •Треугольники напряжений, сопротивлений, мощностей
- •Цепь переменного тока с активным сопротивлением, емкостью и индуктивностью
- •Общий случай неразветвленной цепи
- •Резонанс напряжений
- •Резонансные кривые
- •Разветвленные цепи переменного тока
- •Метод проводимостей
- •Параллельное соединение активно-индуктивного и активно-емкостного сопротивления
- •Общий случай неразветвленной цепи
- •Резонанс токов
- •Коэффициент мощности и его значения
- •Комплексный метод расчета цепей переменного тока
- •Действия над комплексными числами
- •Ток, напряжение и сопротивление в комплексной форме
- •Трехфазные цепи
- •1. Основные понятия
- •Соединение обмоток генератора «звездой»
- •Соединение обмоток генератора треугольником
- •Соединение приемников электроэнергии звездой
- •Соединение приемников энергии треугольником
- •Порядок расчета трехфазной системы
- •Получение вращающегося магнитного поля
- •Электрические измерения
- •Приборы магнитоэлектрической системы
- •Расширение пределов измерения на постоянном токе
- •Приборы электромагнитной системы
- •Приложение
- •Оглавление
Электрическое поле и величины, его характеризующие
Пространство вокруг всякого электрического заряда или нескольких зарядов, через которые осуществляется взаимодействие между зарядами, называется электрическим полем.
Электрическое поле – одна из сторон электромагнитного поля, которое представляет собой особый вид материи и характеризуется следующими свойствами:
1. Электромагнитное поле существует вокруг любой заряженной частицы или тела.
2. Поле характеризуется непрерывным распределением в пространстве.
Оно обладает массой.
Поле – носитель энергии.
Энергия поля может преобразовываться в другие виды энергии (механическую, химическую и др.)
Электрическое поле характеризуется следующими величинами:
напряженностью;
потенциалом;
напряжением.
Напряженностью электрического поля в данной точке называют величину, численно равную силе, с которой поле действует на единичный точечный заряд, помещенный в данную точку поля:
![]()
Напряженность является векторной величиной. За направление вектора напряженности принимают направление силы, с которой поле действует на положительный заряд, помещенный в данную точку поля.
Эл. поле можно изображать с помощью эл. силовых линий так, чтобы вектора напряженности были направлены по касательной к эл. силовыми линиям.
Эл. силовые линии – это пути, по которым перемещается положительный заряд под действием поля.

С помощью эл. силовых линий можно показать интенсивность поля, при этом через площадку проводят линии, число которых пропорционально напряженности поля. Если в формулу напряженности подставить значение силы Fиз закона Кулона, то получим:
![]()
Если поле создается несколькими точечными зарядами, то напряженность такого поля определяется как геометрическая сумма напряженностей, создаваемых каждым зарядом в отдельности.
|
|
|
Если угол не прямой, то используют теорему косинусов.
Электрическим напряжениемназывают отношение работы, совершаемой силами поля по перемещению пробного заряда из одной точки поля в другую, к величине этого заряда.
Эл. поле может быть однородным и неоднородным. В однородном поле вектора напряженности одинаковы по величине и по направлению.
|
|
|
Электрическое напряжение является энергетической характеристикой поля. Это величина скалярная.
Электрическим потенциаломв данной точке является величина, численно равная работе, затрачиваемой на перемещение единичного точечного (положительного) заряда из-за пределов поля в данную точку.
Потенциал – величина скалярная, он может быть положительным и отрицательным.
Для сравнения потенциалов введено условное понятие нулевого потенциала.Условно считают, что нулевой потенциал имеет поверхность Земли, и если потенциал выше нуля, то он положительный, а если ниже – отрицательный.
![]()
Разность потенциалов между двумя точками эл. поля называют напряжением между этими точками:
![]()
Связь между напряжением и напряженностью эл. поля определяется следующим образом. Работу по перемещению пробного заряда в эл. поле можно определить:
![]()
![]()
Задача
|
Дано:
|
Решение: | |
|
|
| |
|
|
| |
Проводники первого ряда: все металлы и их сплавы. Проводники второго ряда: электролиты.
Диэлектрики: керамика, стекло, слюда, кварц, асбест, пластмассы, каучук, минеральные масла, лаки, воздух и др.
Сдвинутые друг с другом под действием внешнего эл. поля и одновременно связанные заряженные частицы в пределах молекулы образуют диполь.
Это явление называется поляризацией диэлектрика. Если диэлектрик убрать из внешнего эл. поля, то поляризация полностью прекращается. Но некоторые диэлектрики (титанат бария, титанат свинца) с исчезновением поля сохраняют остаточную поляризацию.
|
|
|
Чем сильнее поляризуется диэлектрик, тем слабее Ерез при одном и том же Е и тем больше диэлектрическая проницаемость a. |
Напряженность эл. поля, при которой наступает пробой диэлектрика, называется эл. прочностью диэлектрика, или пробивной напряженностью.
Напряжение, при котором происходит пробой диэлектрика, называется пробивным напряжением.
![]()
Отношение
называетсязапасом
прочности.
Полупроводники занимают среднее место по проводимости между металлами и диэлектриками. С повышением температуры их проводимость увеличивается. К ним относятся: кремний, германий, селен, закись меди, сернисный свинец и др.






