Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

skok_m_v_osnovi_imunologi_kurs_lekciy

.pdf
Скачиваний:
138
Добавлен:
01.03.2016
Размер:
1.1 Mб
Скачать

41

залишити ЕПР. При цьому α, β, γ ланцюги швидко деградують, а γ, ε, ζ − стабільні порівняно довго. Далі рецептор, як водиться, доглікозилюється в комплексі Гольджі і виходить на мембрану.

Подібність і відмінності T- і В-клітинних рецепторів.

Подібність:

1)подібні принципи будови і перебудови генів (наявність V, D, J, C сегментів), механізми утворення різноманітності;

2)наявність двох поліпептидних ланцюгів, що впізнають антиген (H/L або α/β) і

модулю, що передає сигнал всередину клітини (Igα і Igβ або CD3);

Відмінності:

1)гени T-клітинного рецептору не підлягають соматичним мутаціям;

2)ген α ланцюга не підлягає алельному виключенню, тобто у гетерозиготи одна Т клітина може нести два варіанти рецептору і мати, відповідно, фактично дві специфічності;

3)B лімфоцити впізнають нативні конформаційно-залежні В-епітопи антигену, а T лімфоцити – лінійні Т-епітопи, що утворилися в результаті процесингу нативних антигенів, у комплексі з білками МНС. При взаємодії Т лімфоцита і клітини, що представляє антиген, утворюється потрійний комплекс, який складається із антигенного пептиду, білку МНС і T-клітинного рецептору (Рис. 13А.) При цьому кожен із учасників цього комплексу взаємодіє з обома іншими партнерами: антиген – із МНС і T- рецептором, МНС – з антигеном і T- рецептором і T-рецептор – з антигеном і МНС, - через специфічні сайти взаємодії.

4)В-лімфоцит, впізнавши антиген та отримавши належні додаткові сигнали, починає секретувати фактично аналог свого антиген-специфічного рецептору (антитіла). Т лімфоцит у відповідь на активацію починає секретувати неантигенспецифічні фактори, цитокіни, або цитотоксичні речовини.

Урізному характері розпізнання антигену В і Т лімфоцитами є глибокий біологічний зміст. В лімфоцити (і антитіла) впізнають поверхневі антигенні детермінанти патогенів, які у певних паразитів можуть мімікрувати під білки хазяїна. Т лімфоцити впізнають внутрішні антигенні детермінанти антигену, що утворюються в результаті процесингу. Серед внутрішніх епітопів менша вірогідність мімікрії під антигени хазяїна, тому Т лімфоцити виконують більш специфічне розпізнання антигенів. Для більшості антигенів, активація продукції антитіл потребує участі Т лімфоцитів. Антитіла є першим бар’єром при вторинній інфекції і повиння знати антиген "в обличчя", тобто в нативній патогенній формі.

Механізм передачі сигналу від рецептору всередину клітини.

1. Загальні принципи.

Передача сигналу від поверхні всередину клітини є необхідною для функціонування будь-якого організму: для дії гормонів, нейромедіаторів, просто для спілкування клітин одна з одною. Для цього природою розроблено спеціальні механізми. Принцип їх універсальний, а деталі дозволяють закодувати і розшифрувати все різноманіття зовнішніх сигналів, що їх може отримати клітина.

Існує декілька загальних каскадів передачі сигналу. Вони складаються із спільних елементів:

1 – рецептор, що сприймає сигнал на зовнішній поверхні клітини; 2 – система вторинних месенджерів, що передає сигнал всередину клітини;

42

3 – каскад реакцій, що призводить до фосфорилювання внутрішньоклітинних білків. Фосфорилювання-дефосфорилювання – універсальний механізм активації у еукаріот (у прокаріот таку функцію виконує метилювання);

4 – активація певних генів, що відбувається внаслідок фосфорилювання і міграції у ядро активаційних ядерних факторів. В результаті цього клітина змінює свою генетичну програму, починає синтезувати нові білки, проліферувати або навпаки включає механізм запрограмованої загибелі – тобто реагує на сигнал, що надійшов іззовні.

Найбільш варіабільним елементом всієї системи є рецептор. Саме він впізнає специфічний сигнал. Завдяки наявності великої кількості різноманітних рецепторів клітина здатна реагувати на все різноманіття зовнішніх стимулів. Клітина може регулювати свою готовність до сприйняття сигналу шляхом варіювання рівня експресії рецептору. Так, наприклад, при активації Т лімфоцитів вони одночасно починають синтезувати інтерлейкін-2 та рецептор до інтерлейкіну-2, тому що активована клітина повинна вміти впізнати активаційний сигнал.

Рецептори – це, як правило, глікопротеїди, що мають екстраклітинну, трансмембранну і цитоплазматичну частини. Всі рецептори можна розділити на дві великі групи: ті, що мають досить довгу цитоплазматичну ділянку, що здатна сама передати сигнал від рецептору (тобто посідає ферментативної активності), і ті, що мають коротку цитоплазматичну ділянку і для передачі сигналу потребують додаткових молекул, об’єднаних із самим рецептором в єдиний комплекс. До першого типу рецепторів відносяться, наприклад, рецептори до інсуліну, фактору росту нервів, епідермального фактору росту, до другого – антиген-специфічні рецептори Т і В лімфоцитів.

2. Системи месенджерів.

Історично, першим вторинним месенджером було відкрито циклічну АМФ (цАМФ) і першим каскадом, який було вивчено, був саме каскад, що активується циклічними нуклеотидами. Зв’язування рецептору із специфічним лігандом призводить до приєднання до цього рецептору так званого G-білка. Утворений комплекс активує аденілатциклазу, що перетворює АТФ на цАМФ. цАМФ активує протеїнкіназу А (ПК- А), що фосфорилює білки по залишках серину та треоніну і таким чином активує їх. Повернення до неактивованого стану відбувається за допомогою цАМФфосфодіестерази, що перетворює цАМФ у 5’-АМФ, і фосфатази, що дефосфорилює активований білок. Слід відмітити, що в процесах активації велику роль відіграє і дефософорилювання – для повернення системи у початковий стан і здатності її сприймати наступні сигнали. Система цАМФ працює в адренорецепторах, дофамінових, гістамінових рецепторах, рецепторах до аденозину, простагландинів, вазопресину, глюкагону.

У 70-х роках було докладно вивчено структуру і функціонування G-білків. Виявилося, що їх активність може модулюватися рядом факторів, у тому числі – токсинами холерного вібріону та збудника кашлюку: саме в цьому полягає механізм патогенної дії цих токсинів.

Далі було відкрито, що подібним вторинним месенджером є і цГМФ. Вона утворюється під дією гуанілатциклази і теж активується комплексом рецептор-G-білок. ЦиклоГМФ активує іншу протеїнкіназу – ПК-G, яка фосфорилює інші, ніж ПК-А білки (теж по залишках серину і треоніну).

До початку 80-х років каскади цАМФ і цГМФ були найбільш вивченими і вважалися за головні. Однак пізніше було з’ясовано, що існують і інші каскади і що в

43

імунних клітинах саме вони відіграють головну роль у передачі сигналу від антигенспецифічних рецепторів. Головним із цих каскадів виявився поліфосфоінозитидний.

Ключовим ферментом цього каскаду є фосфоліпаза С, яка активується після зв’язування рецептора із специфічним лігандом. Активація фосфоліпази С, може відбуватися різними шляхами. У деяких рецепторах цю функцію виконують G-білки; у антиген-специфічних рецепторів імунних клітин – це особливий клас ферментів кіназ, що фосфорилюють білки по залишках тирозину; їх так і називають – тирозинові кінази.

3. Тирозинові кінази в імунних клітинах (Рис. 14).

Як ми пам’ятаємо, рецептори, що впізнають антиген на Т і В лімфоцитах, складаються із двох модулів: того, що зв’язує антиген, і того, що передає отриманий сигнал всередину клітини. У B лімфоцитів це Igα, Igβ, у T лімфоцитів – СD3 комплекс. На цитоплазматичних ділянках цих молекул знайдено специфічні пептидні мотиви, так звані ITAMs (immunoreceptor tyrosine-based activation motives) – короткі амінокислотні послідовності, що містять два залишки тирозину. Такої послідовності достатньо, щоб підключити рецептор до сигнального каскаду. Це було показано за допомогою химерних білків, які містили цитоплазматичну частину Igα, Igβ або СD3 і надклітинну частину інших рецепторів.

Гени, що кодують ІТAMs побудовані однаково в B-клітинному рецепторі, T- клітинному рецепторі, Fc-рецепторі, а також у двох вірусів: бичачої лейкемії та Епштейна-Барра. Вважають, що віруси шляхом обміну генетичною інформацією з клітинами еукаріот змогли "відібрати" цей механізм і використовувати його для злоякісної трансформації інфікованих клітин.

На одному рецепторі знаходиться декілька ІТAMs для підсилення сигналу. Зв’язування антигену із рецепторами B і T лімфоцитів призводить до

конформаційних змін в трансмембранній частині модулю, що зв’язує антиген. Ці конформаційні зміни передаються на сигнальний модуль і його ІТAMs стають доступними для дії тирозинових кіназ. Тирозинові залишки ІТAMs фосфорилюються.

Відомо три родини тирозинових кіназ.

1.Кінази родини Src (Lck, Fyn, Yes, Src, Lyn, Blk). Вони мають унікальний N- кінцевий домен з міристильованим залишком гліцину в положенні 2. Залишок жирної кислоти сприяє тому, щоб кінази Src були зв’язані з плазматичною мембраною.. Вони є специфічними для певних клітин і для певних ступенів розвитку імунних клітин. Так, було показано, що кіназа Lck знаходиться під CD3 комплексом і приймає участь в розвитку Т лімфоцитів. Кіназа Fyn, навпаки, працює тільки в зрілих клітинах. Саме ці кінази взаємодіють з ІТAMs і фосфорилюють їх по залищках тирозину.

2.Кінази родини Syk/ZAP-70; Syk працює в В лімфоцитах, а ZAP-70 – в Т лімфоцитах. Ці кінази не мають у своєму складі жирних кислот і не зв’язані з мембраною. Вважають, що вони приймають естафету від Src кіназ: взаємодіють із фосфорильованими ІТAMs і передають сигнал далі на адапторні білки.

3.Кінази Януса: Jak 1, 2, 3, - і Tyk2 працюють із іншими рецепторами імунних клітин – рецепторами для ростових факторів і інтерлейкінів.

4.Корецептори

Більшість взаємодій антигену з Т і В лімфоцитами, принаймні у первинній імунній відповіді, є низькоафінними. Корецептори посилюють слабку взаємодію клітин і сприяють проходженню сигналу.

44

Корецептори Т лімфоцитів – молекули CD4 і CD8. Це трансмембранні молекули, розташовані поряд із T-клітинним рецептором. Вони виконують дві головні функції:

1)зв’язуються із найближчими до мембрани надклітинними ділянками МНС: β2 доменом МНС ІІ (CD4) та α3 доменом МНС І (CD8); таким чином, з однією молекулою МНС (в різних її частинах) зв’язуються як T-клітинний рецептор, так і CD4/8;

2)своєю цитоплазматичною частиною вони зв’язуються із тирозиновою кіназою Lck, "притягуючи" її до T-клітинного рецептору, що підвищує ефективність передачі сигналу (Рис.14).

Корецептори CD4/8 самі по собі мають значення для розвитку Т лімфоцитів у ході позитивної та негативної селекції (про це йдетиме мова у спеціальній лекції).

Корецептори В лімфоцитів – це молекули CD21 та ТАРА-1.

CD21 – це рецептор до С3dg-компонента комплементу. В Т лімфоцитах антиген-специфічний рецептор і CD4/8 зближуються за рахунок зв’язуання із однією молекулою МНС. В В лімфоцитах антиген-специфічний рецептор і CD21 можуть зближуватися навкруги імунного комплексу, що містить компоненти комплементу. В В лімфоцитах корецептор притягує до В-клітинного рецептору Src кіназу Lyn.

Фосфорилювання Src кіназ контролюється фосфатазою CD45. Цей білок, який є в усіх клітинах крові, крім еритроцитів, дефосфорилює негативний регуляторний сайт тирозинової кінази (коли він фосфорильований, кіназа неактивна) і таким чином активує Src кіназу. Негативний сайт фосфорилюється Csk-кіназою. Таким чином, активність тирозинової кінази, що знаходиться безпосередньо під рецептором, залежить від балансу активностей фосфатази CD45 і кінази Csk. Про важливість такої взаємодії для нормальної життєдіяльності клітини свідчить той факт, що CD45 складає до 10% всіх поверхневих білків Т лімфоциту.

Отже, початкові стадії активації внаслідок зв’язування антигену із специфічними рецепторами В і Т лімфоцитів мають спільні риси, завдяки подібній організації систем, що передають сигнал:

1)обидва рецептори містять спеціальні мотиви, ІТAMs, необхідні для підключення рецепторів до сигнальних каскадів;

2)під рецепторами знаходяться тирозинові кінази двох родин, Src і Syk/ZAP-70, що по черзі вступають в дію;

3)ефективність дії тирозинових кіназ підсилюється дією корецепторів, які зближують, притягують одне до одного елементи системи, що взаємодіють;

4)на початкових стадіях активації важливо фосфорилювання по залишках тирозину, ефективність якого контролюється балансом активностей кіназ і фосфатаз.

Врезультаті цих подій активується фосфоліпаза Сγ1. Вона розщеплює мембранний

фосфоліпід фосфатидилінозитол-4,5-дифосфат на інозитол трифосфат (ІФ3) і

діацилгліцерол (ДАГ) (Рис. 15). ІФ3 мігрує в цитоплазму і приєднується до специфічних рецепторів, що є на ЕПР. У відповідь ЕПР звільняє іони Са, що активують інші білки, кальмодулін і кальціневрін. В Т лімфоцитах кальціневрін дефосфорилює

цитоплазматичну форму ядерного фактору NF-ATс, після чого вона транслоцюється в ядро. ДАГ разом із іонами Са активує протеїнкіназу С (ПК-С) і білок Ras (ГТФ-азу), який за рахунок розщеплення ГТФ сприяє фосфорилюванню протеїнкінази Raf. При цьому запускається іще один сигнальний каскад протеїнових кіназ: кінази мітоген-

45

активованих білків (MAPK і MAPKK (Мек)). В результаті дії каскаду МАР кіназ активуються гени передранньої відповіді c-fos і c-jun. Їх продукт є ядерним фактором NF-ATn. Спільна дія на геном ядерних факторів NF-ATс і NF-ATn запускає транскрипцію певного гену. Таким чином, акт розщеплення фосфатидилінозитолдифосфату запускає відразу декілька сигнальних шляхів, продукти яких у сумісній дії змінюють діяльність геному (Рис. 16).

Послідовність сигнальних подій після зв’язування Т клітинного рецептору було вперше вивчено для активації гену інтерлейкіну-2.

Відомі імунодепресанти, циклоспорин А і FK 506, є інгібіторами кальціневріну, а глюкокортикоїдні гормони, що теж вважаються імуносупресивними, стимулюють синтез спеціального білка, що зв’язує один із ядерних факторів і не дає йому транслоціюватися до ядра.

Важливі висновки цього розділу.

1.Антиген-специфічні рецептори Т і В лімфоцитів побудовано за подібним принципом: вони складаються із поліморфного гетеродимеру, що специфічно зв’язує антиген, і консервативного модулю, що трансформує сигнал антигену до “мови” клітинної біохімії і передає його всередину клітини.

2.Основою всіх активаційних процесів в клітинах еукаріот є універсальний механізм фосфорилювання-дефосфорилювання білків. У часі фосфорилювання спостерігається на протязі 5-10 хв. після дії специфічного ліганду на рецептор, а активність фосфатаз фіксується через 15-20 хв.

3.Існує декілька шляхів (каскадів), що ведуть до фосфорилювання; вони призводять до активації різних типів протеїнових кіназ, які, в свою чергу, фосфорилюють різні спектри субстратів. В імунних клітинах фосфорилювання по залишках тирозину (тирозинові кінази) необхідне для перших етапів трансформації сигналу від рецептора, а по серину і треоніну (протеїнкінази) - для активації цитоплазматичних і ядерних білків.

4.Для активації транскрипції одного гену необхідно декілька факторів, що утворюються в результаті дії різних сигнальних каскадів.

Лекція 8. Костимуляторні молекули та лімфокіни.

Як було розглянуто у минулій лекції, активація Т і В лімфоцитів, що є ключовим моментом розвитку імунної відповіді, потребує взаємодії антигенспецифічного рецептору з антигеном (розчинним, для В лімфоцитів, і представленим з молекулою МНС, для Т лімфоцитів). Сигнал, що генерується в результаті цієї взаємодії, передається до ядра Т чи В лімфоциту і запускає активаційний процес. Проходженню сигналу сприяє корецептор, який, по-перше, підсилює авідність взаємодії рецептору з антигеном, а, по-друге, притягує до сигнального комплексу тирозинову кіназу. Сигнал, що передається, всередині клітини розгалужується і призводить до активації декількох ядерних факторів. Сумісна дія цих факторів здатна активувати певний ген. Таким чином, активація клітини запускається нековалентною взаємодією рецептора з лігандом, підсиленою за рахунок додаткових взаємодій корецептору. Однак виявляється, що для повноцінної активації одного сигналу, що проходить через рецептор і корецептор, не достатньо. Необхідним є ще так званий костимуляторний сигнал, який проходить через спеціальні молекули на поверхні клітини.

46

За типом результату, до якого призводить взаємодія, костимуляторні молекули поділяють на:

-молекули активації Т лімфоцитів;

-молекули активації В лімфоцитів;

-молекули адгезії.

B- клітини

T-клітини

Результат взаємодії

B7.1 (і)

CD28 (п)

активація Т-клітин

B7.2 (і)

CTLA-4 (п)

активація Т-клітин

TNF-R (п)

мTNFα (і)

активація В-клітин

CD40 (п)

CD40L (і)

активація В-клітин

LFA-1

ICAM-1

адгезія Т-В

ICAM-1

LFA-1

адгезія Т-В

За своєю будовою В7.1, В7.2, CD28 та CTLA-4 відносяться до суперродини імуноглобулінів (тобто є імуноглобуліноподібними молекулами); CD40L та TNFα - до родини TNF (tumor necrosis factor – фактор некрозу пухлин): її члени можуть бути як мембранними, так і розчинними білками; TNF-R та CD40 відносяться до родини цитокінових рецептрів типу ІІІ, про що пійде мова пізніше.

У кожній парі, що взаємодіє, крім молекул адгезії, один із компонентів експресований на клітині постійно (п), а другий є індукованим (і). Це означає, що за допомогою костимуляторних молекул клітини можуть взаємодіяти не у будьякий момент, а на певному ступені готовності, тобто за наявності інших активаційних сигналів. Експресія костимуляторних молекул визначає зрілість, готовність клітини вступити до контакту, стимульованому антигеном. Рівень експресії костимуляторних молекул, регулюється розчинними факторами –

цитокінами.

Таким чином, для успішної активації лімфоцитів, що є ключовим процесом імунного розпізнання, необхідною є наявність трьох активаційних сигналів:

1)антигену, належним чином представленого – для Т клітин, і вільного – для В клітин;

2)костимуляторних молекул, що визначають зрілість клітин і їх готовність до відповіді;

3)цитокінів, що стимулюють експресію костимуляторних молекул.

Активація лімфоцитів має своїм наслідком декілька різних процесів: клітини починають ділитися і диференціюватися, тобто синтезувати нові продукти. Це означає, що повинні включатися різні механізми: перехід клітини із стану спокою (фаза Go) до стану руху по клітинному циклу (проліферація), синтез нових внутрішньоклітинних білків, що змінюють життєдіяльність клітини (диференціювання) та синтез білків на експорт: антитіл, цитокінів. Ці механізми включаються під дією різних зовнішніх сигналів, тому вірогідно, що сигнали, які надаються антигеном, костимуляторними молекулами і цитокінами є функціонально різними.

Наявність усіх костимуляторних сигналів за відсутності антигену не призводить до активації клітини і запуску імунної відповіді. При випадкових контактах клітин, наприклад у кровотоці, авідність їхньої взаємодії невелика і вони швидко роходяться "потиснувши один одному руки". Антиген є пусковим сигналом, трігером всієї системи, який значно підвищує авідність взаємодії і дає змогу пройти активаційному сигналові. З іншого боку, система спрацьовує, якщо

47

при появі антигену всі її компоненти готові до відповіді. Якщо ні (бракує якогось із костимуляторних сигналів), можливі різні варіанти результату:

1)активація не відбулася, але клітини залишилися потенційно здатними для майбутньої активації;

2)клітини перейшли у стан анергії і не здатні до подальшої діяльності;

3)клітини вибраковуються як неспроможні виконувати свої функції; в них включається механізм запрограмованої загибелі – апоптозу.

4)за відсутності цитокінового сигналу (при певному рівні костимуляторних молекул) можливе половинчасте активаційне рішення, наприклад, клітина секретує активаційний цитокін, але не проліферує, або навпаки.

Отже, наявність костимуляторних молекул – це ще і контроль надійності системи, який слідкує, щоб роботу по розпізнанню і потенційному знищенню антигену виконували тільки досвідчені і кваліфіковані працівники. Клітини, що не відповідають таким вимогам, виключаються із подальшої діяльності (анергія) або знищуються (апоптоз).

Взаємодія за допомогою костимуляторних молекул підвищує загальну авідність взаємодії двох клітин і є джерелом додаткових активаційних сигналів.

Утворюється так званий імунний сінапс (Рис. 17). Цей термін, взятий із нейробіології, підкреслює наявність локального щільного контакту двох клітин, опосередкованого взаємодією декількох типів молекул, і не має повної аналогії із нервовим синапсом.

Утворення імунного синапсу виконує ще одну функцію, важливість якої стала зрозумілою лише в останній час. Ця функція – зближення представленого антигену і специфічного рецептору. Справа в тому, що для ефективної взаємодії Т- клітинного рецептору і комплексу антигену з МНС клітини, на яких вони представлені, повинні зблизитися на відстань близько 15 нм. Однак як Т лімфоцити, так і клітини, що представляють антиген, щільно вкриті так званим глікокаліксом – великими молекулами сильно гликозільованих, від’ємно заряджених білків, які не дають клітинам зблизитися. Тому перші контакти цих клітин відбуваються за участю адгезивних молекул LFA і ICAM, які можуть взаємодіяти на відстані близько 40 нм. В неактивному стані клітини LFA зв’язаний із цитоскелетом і не може рухатися в площині мембрани. Він звільняється і може дифундувати вздовж мембрани під дією так званих хемокінів – особливого типу розчинних факторів (про них мова піде у наступних лекціях). Це робить можливим перегрупування поверхневих молекул клітин, що взаємодіють. При утворенні імунного синапсу адгезивні молекули залишаються на периферії, а антигенспецифічні рецептори, МНС, що представляють антигенний пептид, і костимуляторні молекули концентруються всередині. Молекули CD28 і CTLA-4 теж більші за розміром, ніж антиген-специфічний рецептор, тому вважають, що саме вони роблять наступний крок для зближення клітин, що взаємодіють. І, нарешті, якщо Т-клітинний рецептор специфічно взаємодіє із представленим антигеном, запускається вся низка активаційних подій. Таким чином, перший крок клітини до активації відбувається під дією хемокінів, які є фактично четвертим активаційним сигналом.

Взаємодія з представленим антигенним пептидом – це природний шлях активації імунних клітин. Однак спочатку сама природа, а потім і людина в експерименті розробила додаткові засоби активації. Можна сказати і так, що

48

імунна система має окольні, побічні шляхи активації, які використовуються у певних спеціальних умовах.

Неспецифічні мітогени.

Неспецифічні мітогени – це речовини рослинного чи бактеріального походження, які неспецифічно взаємодіють з глікопротеїдами мембран імунних клітин. До них відносять рослинні лектини (наприклад, конканавалін A (Кон А), фітогемаглютинин (ФГА) і багато інших) і бактеріальні ліпополісахариди (ЛПС). Мітогенами їх називають тому, що вони викликають проліферацію Т (КонА, ФГА) або В (ЛПС) лімфоцитів. Мітогени не викликають специфічної імунної відповіді, але можуть бути джерелом додаткових сигналів, підвищуючи загальний стан активації лімфоцитів, до деякої міри – замінниками костимуляторних і цитокінових сигналів. Вважають, що відповідь на ЛПС є одним із головних факторів неспецифічного захисту проти бактерій.

Суперантигени.

До суперантигенів відносять білки деяких бактерій і вірусів, наприклад, ентеротоксини стафілококків, нуклеокапсид вірусу сказу. Ці антигени міцно зв’язують білки МНС на поверхні клітин, що презентують антиген, і Т-клітинний

рецептор зовні центрів, що зв’язують звичайні антигени у цих молекулах (Рис. 13Б). Це означає, що активуються всі Т лімфоцити, що несуть антиген-специфічні рецептори певної родини. Якщо лімфоцити зрілі і мають достатню кількість костимуляторних молекул, розвивається дуже сильна поліклональна відповідь. Якщо ж суперантигени зв’язують Т лімфоцити у спокої, взаємодія призводить до анергізації останніх за відсутності костимуляторних молекул. Очевидно, що такий механізм надає перевагу мікроорганізмам у протидії з імунною системою вищих тварин.

Виявилося, що за таким самим принципом працюють так звані ендогенні суперантигени, інформація про які зберігається в геномі макроорганізму. Це Mls і Mls-подібні антигени. При детальному вивченні виявилося, що всі вони – продукти генів ретровірусу пухлини молочної залози мишей. Вірогідно, на певному етапі цей вірус вбудувався в геном миші і став кодувати ендогенні антигени. Продукти його генів зв’язуються по типу суперантигенів із певними типами Т-клітинних рецепторів і сприяють знищенню відповідних Т клітин в процесі розвитку (негативний відбір). Вони присутні в активованих В клітинах, цитотоксичних Т лімфоцитах і тимічних дендритних клітинах.

Сигналом, що до певної міри нагадує зв’язування антигену, є зв’язування відповідного рецептору специфічними антитілами, яке, як правило, призводить до кластерізації цих рецепторів. Наслідком такого зв’язування може бути як повноцінна активація (наприклад, при зв’язуванні CD40 на В лімфоцитах), так і анергія, якщо сигнал розцінено як неповноцінний. Для Т клітин проліферативним сигналом є зв’язування антитілами CD3 комплексу. Антитіла є зручним штучним засобом, за допомогою якого можна прослідкувати, як відповідає клітина на зв’язування того чи іншого рецептору на її поверхні, тобто до певної міри змоделювати результат зв’язування рецептором свого специфічного ліганду.

Цитокіни і рецептори до цитокінів.

Цитокіни – це група білків, що секретуються, за допомогою яких клітини спілкуються між собою. Цитокіни впливають на розвиток і стан активації імунних клітин. На відміну від гормонів, які впливають на клітини-мішені на значній відстані, більшість цитокінів є молекулами близької (паракринної) дії, тобто впливають на клітини, що знаходяться у контакті, або навіть на саму клітину, що їх

49

синтезує (аутокринна дія). Цитокіни діють на спеціальні рецептори і запускають таким чином свої сигнальні каскади. Час напівжиття цитокінів у кровотоці вимірюється хвилинами і секреція їх теж є коротким процесом, тобто цитокіни діють локально і на короткий час. Як правило, вони не знаходяться в клітині у вигляді попередників, а синтезуються в результаті активації гену (наприклад, після проходження сигналу через Т-клітинний рецептор, як було розглянуто в попередній лекції). За своїми фізико-хімічними властивостями цитокіни – це глікопротеїди з молекулярною вагою 15-25 КДа. Для кожного з них характерна значна гетерогенність за розмірами завдяки різній насиченісті вуглеводами, посттрансляційним модифікаціям (N і С-кінцевий процесинг) і олігомерізації.

Історично, першими відкритими у 50-тих роках цитокінами були інтерферони – антивірусні речовини, що продукуються клітиною у відповідь на вірусну атаку. Термін лімфокіни було запропоновано в 1969 році для позначення медіаторів клітинного імунітету не-антитільної природи. Лімфокіни продукувалися активованими лімфоцитами, на відміну від монокінів, що продукувалися моноцитами. Коли стало ясно, що чіткого розмежування між ними нема, було введено загальний термін цитокіни.

Також стало ясним, що один і той самий цитокін може викликати у різних клітин різну відповідь і регулювати, окрім імунних реакцій, багато інших функцій організму. Серед клітин крові найбільш активними продуцентами цитокінів є макрофаги і активовані Т лімфоцити.

До 1980 року цитокіни вивчали як активності, притаманні тим чи іншим клітинним екстрактам. За останні 20 років виділено, очищено, з’ясовано амінокислотні послідовності і клоновано гени більш як 20 цитокінів. Вивчено також їх рецептори.

1. Номенклатура цитокінів.

Спочатку цитокіни називали за їх функціями (біологічними ефектами): фактор, що інгибує макрофаги (МІФ), фактор, що інгибує лімфоцити (ЛІФ), фактор, що активує макрофаги (МАФ) і т.і. Коли стало ясно, що цитокіни поліфункціональні, з’явилась потреба в універсальній класифікації. Зараз їх поділяють на чотири категорії.

1)Гемопоетичні фактори – ті, що стимулюють ріст і созрівання незрілих клітин крові. До них відносяться фактори, що стимулюють ріст колоній (CSF), інтерлейкіни 3 і 7, еритропоетин.

2)Регулятори природного імунітету – ті, що приймають участь в неспецифічному захисті організму від бактеріальних і вірусних інфекцій. До них відносяться інтерферони α і β, цитокіни запалення: інтерлейкіни 1 і 6 і фактор некрозу пухлин (TNF-α), а також хемокіни.

3)Цитокіни, що регулюють специфічні імунні реакції – ті, що приймають участь в активації, рості і диференціюванні зрілих лімфоцитів, наприклад, інтерлейкіни 2 і 4.

4)Цитокіни, що регулюють запалювальні реакції, які розвиваються в процесі специфічної імунної відповіді. До них відносяться, наприклад, інтерферон

γ, лімфотоксин, інтерлейкіни 5 і 10.

Таке розподілення є до певної міри умовним, оскільки, як вже зазаначалося, один цитокін може впливати на різні клітини, опосередковуючи різні ефекти, і, навпаки, одна функція може регулюватися більше, ніж одним цитокіном. Цитокіни імунної системи утворюють каскад. Антиген стимулює спочатку синтез цитокінів “першої хвилі” – прозапалювальних цитокінів: інтерлейкінів 1 і 6 і TNF-α, - які

50

індукують біосинтез цитокінів “другої хвилі” – інтерлейкінів 2, 3, 4, 5 та ін., які, в свою чергу, впливають на синтез ранніх цитокінів. Такий принцип дозволяє регулювати і підсилювати імунну відповідь, залучаючи до неї все нові й нові клітини. Ми розглянемо функції деяких із них, які стосуються діяльності імунних клітин.

2. Функції цитокінів.

Інтерферони

Інтерферони α і β продукуються клітинами, що заражені вірусом. Вони мають токсичний ефект для вірусу, а також індукують підвищену експресію МНС І клітинами-мішенями (для кращого представлення вірусу), проліферацію В лімфоцитів, посилення активності природних кілерів.

Інтерферон γ продукується Т лімфоцитами. Він теж посідає анти-вірусної активності, а також активує макрофаги, Т-лімфоцити, В-лімфоцити, природні кілери, індукує експресію МНС І і ІІ, посилює секрецію антитіл.

Інтерлейкіни (ІЛ)

Термін "інтерлейкіни" означає розчинні фактори, що опосередкують спілкування між лейкоцитами. Історично його було введено у спробах уніфікувати позначення багатьох відомих цитокінів. Конференція, на якій було прийнято цей термін, проходила в швейцарському містечку Інтерлакен ("той, що знаходиться між озерами"), тому термін був подвійно символічним.

Зараз відомо більш ніж півтора десятки інтерлейкінів. Головні із них такі. ІЛ-1: продукується активованими макрофагами і В-лімфоцитами. Викликає

проліферацію Т клітин, диференціювання пре-В клітин, проліферацію та секрецію антитіл В клітинами. Також стимулює: проліферацію фібробластів і ендотеліальних клітин, секрецію TNF ендотеліальними клітинами, посилення продукції білків гострої фази. Вважається головним цитокіном запалення; приймає участь також в заживленні ран і обміні кальцію в кістках.

ІЛ-2: продукується Т лімфоцитами. Вважається головним регуляторним цитокіном. Фактично, разом із γ-інтерфероном, є активатором цитотоксичної гілки імунної відповіді. Викликає проліферацію та посилення цитотоксичної дії активованих Т лімфоцитів, посилення експресії рецептору до ІЛ-2, продукцію інших цитокінів Т клітинами, а також проліферацію В лімфоцитів.

ІЛ-3: продукується активованими Т лімфоцитами, тучними клітинами і базофілами. Стимулює ріст та диференціювання стовбурових клітин, сприяє звільненню базофільних медіаторів, посиленню фагоцитозу та функцій еозінофілів.

ІЛ-4: продукується стимульованими Т лімфоцитами, а також клітинами строми кісткового мозку і тучними клітинами. Викликає проліферацію активованих В- лімфоцитів і переключення ізотипів імуноглобулінів з IgM на IgG1 та IgE. До певної міри ІЛ-4 є антагоністом ІЛ-2, посилює фагоцитоз, представлення антигену та продукцію ІЛ-1, ІЛ-6 та TNFα (цитокінів запалення) в моноцитах.

ІЛ-5: продукується Т лімфоцитами і тучними клітинами. Контролює диференціювання В клітин у клітини, що секретують антитіла. Він також індукує компонент рекомбінази, який діє разом із ІЛ-4 при переключенні з Сμ на Сγ1. Стимулює продукцію IgA та IgM активованими В лімфоцитами, диференціювання клітин кровотворення, еозінофілів.

ІЛ-6: продукується Т лімфоцитами, моноцитами, фібробластами, ендотеліальними клітинами. Стимулює ріст та продукцію антитіл В клітинами, а також посилює синтез білків гострої фази, експресію ІЛ-2 та його рецептору та

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]