
- •4. Качественный химический анализ. Основные понятия. Предмет и средства. Чувствительность, специфичность, селективность.
- •Типы аналитических реакций:
- •1. Микрокристаллоскопический
- •2. Капельный
- •5. Классификация катионов и анионов на группы. Аналитические группы катионов. Обзор реакций.
- •6. Количественный анализ. Предмет и методы.
- •7. Весовой анализ. Принципы и методы объемного анализа. Растворы в объемном анализе.
- •8. Метод нейтрализации. Кислотно-основные индикаторы. Смешанные индикаторы. Кривые титрования. Титрование в неводных средах.
- •9. Комплексометрия. Реакции, применяемые в комплексометрии. Кривые титрования. Этилендиаминтетрауксусная кислота, как реагент в комплексометрии.
- •10. Редоксметрия. Перманганатометрическое титрование. Иодометрическое титрование. Электроды в редоксметрии.
- •11. Физико-химические и физические методы анализа. Общая характеристика методов.
- •12. Методы адсорбционного фотометрического анализа.
- •13. Хроматографический анализ. Классификация методов.
- •Классификация методов хроматографии
- •14. Жидкостная адсорбционная, ионообменная хроматография. Хроматография в тонком слое. Гель-хроматография.
- •15. Спектральные методы исследования органических соединений (уф-, ик- и ямр-спектроскопия).
- •16. Электронная спектроскопия органических соединений (уф-спектроскопия).
- •17. Законы поглощения света веществом. Коэффициент молярной экстинции.
- •18. Спектры поглощения органических соединений.
- •19. Возможности электронной спектроскопии в установлении строения органических соединений.
- •20.Спектры испускания (флуоресценция, фосфоресценция.)
- •21. Действие ик-излучения на молекулы органических соединений. Возможности ик-спектроскопии при изучении органических соединений.
- •22. Спектроскопия ядерного магнитного резонанса. Ядерный магнитный резонанс (ямр) и условия его возникновения.
- •23. Масс-спектрометрия органических соединений. Происхождение масс-спектров (ионизация молекул органических соединений при бомбардировке электронами, лазерного излучения и др.).
- •24. Рентгеноструктурный анализ органических соединений. Преимущества и недостатки метода рентгеноструктурного анализа в исследовании органических соединений.
- •2) Что такое активность? Как связана активноть иона и его равновесная концентрация? Что такое ионная ила ратвора, коэффициент активности?
- •3.Что такое мольная доля?
- •4.Как формулируется закон действия масс? Что такое термодинамичекая канстанта равноввессия? Какие факторы влияют на ее величину?
- •6)Что такое условная константа равновесия? Какие факторы влияют на ее величину?
- •8) В чем суть условия материального баланса? Сформулируйте принцип решения уравнения материального баланса.
- •9. Что такое константа диссоциации и степень диссоциации.
- •11. Как влияет введение одно- и разноименных ионов на степень диссоциации слабого электролита?
- •2. Что такое окислитель, восстановитель, окисление и восстановление?
- •3. Что называется электродным потенциалом?
- •4. Как влияет ионная сила на величину электродного потенциала?
- •5. Как влияет рН среды на величину потенциала? Выведите формулу зависимости потенциала от рН для полуреакции, протекающей с участием ионов водорода или гидроксида.
- •6. Как определить направление реакции окисления-восстановления и полноту ее протекания?
- •8. Приведите примеры использования окислительно-восстановительных реакций для растворения малорастворимых соединений.
- •9. Назовите основные окислители и восстановители, используемые для разделения и обнаружения ионов. Напишите соответствующие полуреакции.
- •12. Почему избыток хлорид-ионов мешает обнаружению ионов марганца по реакции образования перманганата?
- •13. Почему не удается обнаружить ион марганца (II) действием окислителя на концентрированные растворы солей марганца (II) ?
- •14. Напишите реакции взаимодействия бромид- и иодид-ионов с хлорной водой и объясните, в какой последовательности они протекают.
- •15. В каких условиях нитрат-ион можно восстановить до: а) аммиака; б) нитрит-иона?
- •1.Какие системы называются гетерогенными? Приведите примеры.
- •2. Выведите формулу константы растворимости.
- •3. Как выражают константу растворимости для идеальных и реальных систем? От чего зависит величина константы растворимости для этих систем?
- •4. Как связаны термодинамическая, реальная и условная константы растворимости?
- •5. Как влияет одноименный ион на растворимость осадка?
- •6. Почему при выделении осадка следует избегать большого избытка осадителя?
- •7. Как влияют электролиты на растворимость осадка?
- •8. Что называется растворимостью и молярной растворимостью?
- •9. Выведите формулу для расчета растворимости соединения АmВn.
- •10. В каких случаях по величинам констант растворимости можно сравнивать растворимость малорастворимых соединений?
- •11. Сформулируйте условия образования и растворения осадка.
- •12. Как влияет температура на растворимость осадка?
- •13. Каковы причины растворимости малорастворимых соединений: а) в кислотах; б) в щелочах?
- •16. Как перевести сульфаты катионов II группы в карбонаты?
- •1. Дайте определение следующим понятиям: разделение, концентрирование, абсолютное и
- •2. Приведите примеры классификаций методов разделения и концентрирования. На чем они основаны?
- •3. Осаждение и соосаждение как методы разделения и концентрирования.
- •4. Перечислите факторы, от которых зависит коэффициент распределения.
- •5. Какие из перечисленных параметров (концентрация, рН раствора, маскирующие вещества, температура) влияют на значение коэффициента распределения?
- •8. В чём сущность методов экстракции? Какие задачи решаются с помощью этих методов?
- •10. Какие процессы определяют скорость экстракции?
- •11. Классификация экстракционных систем.
- •12. Назвать органические растворители, наиболее часто используемые в методах экстракции.
- •13. Назвать основные типы соединений, в виде которых экстрагируются ионы металлов. Привести примеры.
- •14. Каковы достоинства и недостатки методов экстракции?
- •15. В чем сущность методов хроматографии?
- •16. Как классифицируются методы хроматографии по агрегатному состоянию фаз; механизму процесса разделения; технике выполнения и по цели проведения?
- •18. Каковы области применения, достоинства и недостатки методов адсорбционной хроматографии?
- •19. В чём сущность метода ионообменной хроматографии?
- •20. Назвать основные типы ионитов. Что называется обменной ёмкостью ионита?
- •21. Каковы области применения, достоинства и недостатки метода ионообменной хроматографии.
- •22. Пояснить сущность метода осадочной хроматографии. Назвать варианты этого метода анализа.
- •23. На чём основан качественный анализ методами осадочной и распределительной хроматографии на бумаге?
- •24. Как количественно оценивают способность различных веществ к разделению на бумаге?
- •28. В чем сущность тонкослойной хроматографии?
- •29. Каковы преимущества тонкослойной хроматографии перед другими хроматографическими методами?
- •1.Что такое комплексное соединение
- •2. Какие факторы влияют на устойчивость комплексных соединений
- •3.Какие принципы могут быть положены в основу классификации комплексных соединений?
- •4. Назовите основные типы комплексных соединений. Приведите примеры.
- •5. Дайте определение следующим понятиям: комплексообразователь, лиганды, координационное число, дентатность лиганда, заряд комплексного иона.
- •6. Что называется внутрикомплексным соединением? Приведите примеры
- •7. Какие равновесия имеют место в растворах комплексных соединений? Как можно охарактеризовать эти равновесия?
- •8.Что такое ступенчатые и общие константы устойчивости комплексных соединений?
- •9.Дайте теоретическое обоснование возможности использования комплексных соединений для избирательного растворения и осаждения малорастворимых соединений.
- •10.Какие свойства комплексных соединений имеют наиболее важное значение для обнаружения и разделения ионов?
- •11. Приведите примеры использования реакций комплексообразования для растворения:
- •13. Приведите примеры использования реакций комплексообразования для маскирования мешающих ионов.
- •14. Приведите примеры использования реакций комплексообразования для идентификации ионов.
11. Приведите примеры использования реакций комплексообразования для растворения:
а) сульфатов бария и свинца; б) хлоридов серебра и ртути (I).
Под комплексными соединениями понимают соединения, обра-зованные-двумя или несколькими простыми соединениями, которые могут существовать самостоятельно.
Методы комплексообразования основаны на использовании реакций комплексообразования, например:
Ag+ + 2CN- = [Ag(CN)2]- – цианометрия;
Al3+ + 6F- = [AlF6]3- – фторометрия.
Пользуясь методами комплексообразования, можно количественно определять разнообразные катионы (Ag+, Hg2+, Al3+ и др.) и анионы (CN-, F-, Cl- и др.), склонные вступать в реакции комплексообразования.
Восстановление ртути (I) до металлической:
а) хлоридом олова (II).
В пробирку вносят 2-3 капли раствора соли ртути (I) и 3-4 капли раствора SnCl2. Наблюдают образование белого осадка Hg2Cl2, быстро изменяющего свой цвет вследствие образования элементной ртути (темнеет). Реакцию выполняют в кислой среде.
2HgCl2 + 2SnCl2 2SnCl4 + 2Hg
13. Приведите примеры использования реакций комплексообразования для маскирования мешающих ионов.
Реакции комплексообразования.
Теория Льюиса-Пирсона. Типы комплексных соединений, используемых в аналитической химии. Классификация комплексных соединений по характеру взаимодействия металл-лиганд, по однородности лиганда и центрального иона (комплексообразователя). Свойства комплексных соединений, имеющие аналитическое значение: устойчивость, растворимость, летучесть, спектральные характеристики.
Ступенчатое комплексообразование. Количественные характеристики комплексных соединений: константы устойчивости (ступенчатые и общие), степень образования комплекса. Факторы, влияющие на комплексообразование: строение центрального атома и лиганда, концентрация компонентов, рН, ионная сила раствора, температура. Термодинамическая и кинетическая устойчивость комплексных соединений.
Влияние комплексообразования на растворимость соединений, кислотно-основное равновесие, окислительно-восстановительный потенциал систем, стабилизацию различных степеней окисления элементов. Способы повышения чувствительности и избирательности анализа с использованием комплексных соединений. Теоретические основы взаимодействия органических реагентов с неорганическими ионами. Влияние их природы, расположения функционально-аналитические групп, стереохимии молекул реагента на его взаимодействие с неорганическими ионами. Теория аналогий взаимодействия ионов металлов с неорганическими реагентами типа H2O, NH3 и H2S и кислород-, азот-, серосодержащими органическими реагентами. Основные типы соединений, образуемых с участием органических реагентов. Хелаты, внутрикомплексные соединения. Факторы, определяющие устойчивость хелатов. Важнейшие органические реагенты, применяемые в анализе для разделения, обнаружения, определения ионов металлов, для маскирования и демаскирования.
14. Приведите примеры использования реакций комплексообразования для идентификации ионов.
Химическая идентификация (обнаружение) - это установление вида и состояния фаз, молекул, атомов, ионов вещества на основе сопоставления экспериментальных и справочных данных для известных веществ. При идентификации определяется комплекс свойств вещества: цвет, фазовое состояние, плотность, вязкость, температура кипения, плавления, растворимость и др.
Имеются некоторые реакции, которые позволяют обнаружить то или иное вещество или ион в присутствии других веществ или ионов. Такие реакции называются специфическими. Например, ион NН4+ обнаруживается реакцией NH4Cl + NaOH = NH3↑ + H2O + NaCl, а йод с крахмалом дает синее окрашивание.
Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. В ходе реакций образуются труднорастворимые соединения, окрашенные комплексные соединения или изменение цвета раствора.
Имеется много органических и неорганических реагентов, образующих осадки или окрашенные комплексные соединения с катионами и анионами. Например, ализарин + Al3+ → ярко-красный осадок, дихромат калия К2Cr2O7 + Ca2+ → оранжевый осадок, дифениламин (С6Н5)2NH + NO3- → раствор темно-синего цвета.
Таким образом, химическая идентификация заключается в основном на реакциях осаждения, комплексообразования.