Лекция№2 Свойства сварочной дуги
.docЛекция № 2
Физические явления, протекающие в сварочной дуге
Сварочная дуга представляет собой один из видов устойчивого электрического разряда через газовый промежуток, в котором находится смесь нейтральных атомов, электронов и ионов. Этот разряд характеризуется высокими плотностью тока и температурой. Электрод, соединенный с отрицательным зажимом источника, называется катодом, а электрод, соединенный с положительным зажимом — анодом. Под действием напряжения, имеющегося между электродами, электроны и отрицательно заряженные ионы перемещаются к аноду, а положительно заряженные ионы — к катоду. В дуговом разряде наблюдается неравномерное распределение электрического поля в межэлектродном пространстве, состоящем из трех областей: катодной, анодной и столба дуги. Такая структура связана с тем, что столб дуги не может граничить непосредственно с металлом электродов, так как в большинстве случаев точка кипения последних значительно ниже температуры столба. В приэлектродных областях, соединяющих столб дуги с электродами, происходит постепенное снижение температуры и степени термической ионизации газа. На поверхности электродов часто наблюдаются пятна — катодное и анодное, на границе которых с соответствующими областями дуги наблюдаются скачки потенциалов. Поэтому процессы образования заряженных частиц и переноса тока в этих областях существенно отличаются от соответствующих процессов в столбе, причем основные свойства столба мало зависят от процессов в катодной и анодной областях.
Катодная область. Большую роль в обеспечении проводимости дугового промежутка играет поток эмитированных катодом электронов. Этот процесс обеспечивается как за счет нагрева поверхности катода (термоэлектронная эмиссия), так и за счет создания у его поверхности электрического поля высокой напряженности (автоэлектронная эмиссия). При термоэлектронной эмиссии электроны за счет нагрева приобретают необходимый запас кинетической энергии для преодоления потенциального барьера, ограждающего поверхность катода. Эту энергию характеризуют работой выхода электрона UBЫX, величина которой для разных металлов составляет от 2 до 5 В. При автоэлектронной эмиссии энергия, необходимая для вырывания электронов из катода, сообщается внешним электрическим полем, которое вытягивает их за пределы воздействия электростатического поля металла. Определенный вклад вносит и бомбардировка катода движущимися частицами. Электроны, прошедшие барьер, ускоряются в поле катодного потенциала в сторону столба дуги и, отдавая свою кинетическую энергию в столкновениях с нейтральными атомами, поддерживают ионизацию и нагрев газа на границе между столбом дуги и катодной областью. Внешнее электрическое поле положительных ионов, скопившихся в катодной области, уменьшает работу выхода электронов UBЫX на 1-2 В. Данное явление называется эффектом Шоттки. Поскольку реальная работа выхода электронов UBЫXР и катодное падение напряжения UKАТ имеют разные знаки, то в общем случае потенциальный барьер для выхода электронов уменьшается, что может быть выражено так; UKАТ - UBЫXР. При малых размерах катодной области экспериментально можно определить именно эту величину, которая и принимается за катодное падение напряжения. Протяженность lKАТ катодной области электрической дуги очень мала и составляет 10-4-10-3 мм. Величина катодного падения напряжения UKАТ лежит в пределах 5-20 В. Тогда градиент падения напряжения (UKАТ / lKАТ) равен 104-105 В/мм. Исследования показывают, что в катодной области доля электронного тока составляет около 60% от полного тока Iд, а плотность тока на стальном катоде близка к 25 А/мм2.
Анодная область. Анод не эмитирует положительно заряженных ионов, поэтому анодный ток обусловлен переносом к нему отрицательно заряженных частиц — электронов. В связи с этим вблизи анода образуется избыток отрицательных зарядов, в результате чего у поверхности анода возникает дополнительный потенциальный барьер, величина напряжения которого равна работе выхода электронов UBЫX. Электроны не могут выйти из анода и за счет энергии теплового движения, так как анодное падение напряжения Uан создает для них непреодолимый барьер. Общее значение потенциала в анодной области равно Uан + UBЫX. Электроны, выходящие из плазмы столба дуги и попадающие в анодную область, ускоряются в поле анодного падения потенциала и приобретают дополнительную энергию, которой оказывается достаточно для ионизации атомов, сталкивающихся с электронами. Появившиеся ионы также ускоряются под действием анодного падения напряжения в сторону столба дуги и отдают плазме свою избыточную энергию посредством деионизации и соударений. Протяженность анодной области сопоставима с длиной свободного пробега электрона и составляет около 10-3 мм. В зависимости от материала анода и типа ионизирующих присадок Uан лежит в пределах 2-10 В. Градиент напряжения имеет порядок 104 В/мм, т. е. ниже, чем в катодной области. Доля ионного тока в анодной области составляет около 20% от общего тока Iд , а плотность тока для стальных электродов в анодной области приблизительно равна 15 А/мм2.
Столб дуги. Эта часть дуги расположена между катодной и анодной областями и имеет длину, на несколько порядков превышающую размеры указанных областей, lст = 1-40 мм. Заряженные частицы поступают в столб дуги из катодной и анодной областей, а также возникают в нем за счет термической ионизации нейтральных частиц. Последний процесс играет подчиненную роль. Так, степень диссоциации в парах железа у сварочных дуг не превышает 4%, что свидетельствуете слабой ионизации плазмы столба дуги. В столбе электронная составляющая тока намного больше ионной. Падение напряжения в столбе UCT достигает 40 В, что обеспечивает градиент напряжения εст = 1-4 В/мм. При этом падение напряжения прямо пропорционально длине столба 1СТ. Плотность тока в столбе дуги со стальными электродами достигает 20 А/мм2.
Поскольку протяженность приэлектродных областей мала по сравнению с длиной столба, то длину дуги считают равной длине столба
Распределение потенциала в дуге имеет вид, показанный на рис. 2.1. Из приведенного графика следует, что падение напряжения на дуге для точных расчетов можно записать так:
При использовании экспериментальных данных зависимость упрощается:
Вся мощность, выделяемая в катодной области Ркат = Iд (UKАТ - UBЫXР), идет в катод на плавление, испарение и теплоотвод. Мощность тепловыделения на аноде вычисляется по соотношению Ран = 1д(Uан + UBЫX). Знание соотношения мощностей, выделяемых на катоде и аноде, необходимо для выбора полярности дуги при сварке на постоянном токе. Для большинства покрытых электродов Ран больше РкаТ в 1,3-1,5 раза. Поэтому при ручной дуговой сварке для увеличения скорости плавления электрода используют обратную полярность (+ на электроде). Такая же полярность используется при механизированной сварке плавящимся электродом. При сварке неплавящимся вольфрамовым электродом для уменьшения его перегрева и износа применяют прямую полярность (– на электроде).