Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекция№3_Особ_гор_свар_дуги_пер_тока

.doc
Скачиваний:
21
Добавлен:
29.02.2016
Размер:
3.8 Mб
Скачать

Лекция №3

Особенности горения сварочной дуги переменного тока

Устойчивость горения дуги при сварке на переменном токе ниже, чем на постоянном. Действительно, при частоте переменного напряжения сети 50 Гц сварочный ток 100 раз в секунду снижается до нуля и меняет направление на обратное, причем после каждого такого обрыва дуга должна возбуждаться снова. Таким образом, при сварке на переменном токе источник должен обладать специфическим свойством — обеспечи­вать многократное повторное зажигание дуги.

Процесс повторного зажигания дуги при переходе тока через нуль рассмотрим по осциллограммам (рис. 3.1,а). В конце предыдущего полупериода с момента t1 напряжение трансформатора становится недоста­точным для питания дуги, в результате дуга угасает, а ток резко снижается. С момента угасания t1 температура межэлектродного промежутка ТМЭ падает, а его сопротивление RМЭ резко возрастает (рис. 3.1,6).

Рис. 3.1. Типичные осциллограммы дуги переменного тока: а — свароч­ные ток iд и напряжение ид, б — температура Тмэ и сопротивление RMЭ межэлектродного промежутка

После перехода тока через нуль в момент t0 анод и катод меняются местами, т.е. направление тока изменяется на обратное. Дуговой разряд мгновенно в момент t0 восстановиться не может, для этого мало напряжение источника. Небольшой преддуговой ток, существующий при этом, создается за счет остаточной плазмы межэлектродного промежутка (не более 0,1 мс после угасания дуги) и термоэлектронной эмиссии с не остывшего еще катода (в течение 1-10 мс). Таким образом, электриче­ский разряд в переходном периоде t1t2 не является дуговым, поскольку не обеспечивает генерирования заряженных частиц в количестве, доста­точном для самостоятельного существования дуги. По мере нарастания напряжения источника растет и преддуговой ток, но скорость его увели­чения diд/dt, вплоть до момента t2, существенно ниже, чем скорость сни­жения в момент времени t1. В переходном периоде идут два встречных процесса: с одной стороны, ионизация межэлектродного газа и его на­грев нарастающим током, с другой стороны, деионизация и охлаждение за счет теплоизлучения и теплоотвода в электрод и изделие. Рассмотрим три варианта развития процессов в зависимости от условий сварки.

При достаточно благоприятных условиях (большой объем и высокая степень ионизации остаточной плазмы, мощная термоэлектронная эмис­сия с горячих неплавящихся электродов) из двух процессов существенно преобладает ионизация, поэтому при достижении напряжением источ­ника величины Uд дуговой разряд легко восстанавливается. Менее благо­приятные условия повторного зажигания (рис. 3.1) наблюдаются в большинстве случаев сварки (покрытыми электродами, под флюсом и т.д.). Термоэлектронная эмиссия со сравнительно холодных плавящихся элек­тродов не обеспечивает необходимого количества заряженных частиц. Поэтому дуга возобновляется только в момент t2 при достижении напря­жением источника довольно высокой величины напряжения повторного зажигания U3, достаточной для развития автоэлектронной эмиссии. На­конец, в неблагоприятных условиях (малая мощность дуги, большая ее длина, обдув газовыми потоками) из двух процессов преобладает деионизация, при этом температура Тмэ межэлектродного промежутка резко снижается, а его сопротивление RMЭ также резко возрастает, как показано пунктиром на рис. 3.1, б, и дуга обрывается.

После зажигания напряжение на дуге снижается от U3 до прибли­зительно постоянной величины Uд и сохраняется на этом уровне до сле­дующего угасания в момент t4. Ток после зажигания резко возрастает и далее меняется по кривой, близкой к синусоиде, достигая максимума в момент t3. Оценивая осциллограммы (рис. 3.1,а) в целом, заметим, что кривые тока и напряжения дуги отличаются от синусоидальных. Как по­казано выше, это объясняется нелинейностью нагрузки, т. е. непостоянством активного сопротивления дуги, а также непостоянством характера разряда.

Рис. 3.2. Динамическая ха­рактеристика дуги перемен­ного тока

Динамическая вольт-амперная характеристика дуги ид = f(iд), от­ражающая связь мгновенных значений напряжения и тока при их быстром изменении, характерном для сварки на переменном токе частотой 50 Гц, показана на рис. 3.2. Ее можно построить по данным осциллограм­мы (рис. 3.1, а) или получить на осциллографе, подавая на горизонталь­ную развертку сигнал, пропорциональный току, а на вертикальную — напряжение дуги. Номера характерных точек на рис. 3.2 совпадают с ин­дексами точек осциллограммы (рис. 3.1,а). Здесь на участке 1-0 изобра­жен процесс угасания дуги в полупериоде обратной полярности, 0-2 — процесс зажигания в полупериоде прямой полярности, 2-3 — дуговой разряд при нарастании тока, 3-4 — дуговой разряд при спаде тока, 4-— угасание дуги и т. д.

На динамической характеристике легко фиксируются напряжение U3 и ток I3 повторного зажигания. Обращает на себя внимание большой пик напряжения зажигания обратной полярности U3.ОБР. Дело в том, что в этот момент катодом является сравнительно холодная сварочная ванна с невысокой эмиссионной способностью. Заметно также, что максималь­ное значение тока в полупериоде прямой полярности выше, а напряжение ниже соответствующих величин для полупериода обратной полярности. Следовательно, дуга частично выпрямляет ток, наблюдается так называ­емый вентильный эффект. Динамическая характеристика на участке 2-3 нарастания тока проходит выше, чем на участке спада 3-4. Таким обра­зом, при частоте 50 Гц проявляется инерционность тепловых процессов в дуге. На участке 2-3 температура столба дуги ниже, чем на участке 3-4 (рис. 3.1, б), поэтому сопротивление дуги больше и напряжение дуги также выше.

Статическая вольт-амперная характеристика дуги переменного тока Uд = f(Iд) строится не для мгновенных, а для действующих, т. е. среднеквадратичных значений. По рис. 3.1,а

В эксперименте такая характеристика получается при использовании приборов электромагнитной системы — вольтметра и амперметра. Ха­рактеристика Uд = f(Iд) подобна той, что была ранее описана для дуги постоянного тока (рис. 2.2). Поэтому для обеспечения устойчивого про­цесса последовательно со вторичной обмоткой трансформатора должен быть включен элемент, формирующий падающую характеристику ис­точника — резистор, катушка индуктивности или конденсатор.

3.1.3. Дуга переменного тока в цепи с резистором

Рассмотрим работу источника переменного тока — трансформатора с резистором в цепи дуги (рис. 3.3,а). Трансформатор снижает сетевое напряжение до необходимого при сварке, резистор формирует падающую внешнюю характеристику и используется для настройки тока.

Рис. 3.3. Дуга в цепи с резистором: а — электрическая схема, б — осциллограммы тока и напряжения

Поскольку электрическая цепь содержит нелинейный элемент — ду­гу, ведем анализ для мгновенных значений ид, и2, i2. По второму правилу Кирхгофа для мгновенных значений напряжений имеем:

и2 = ид + иR , (3.1)

т. е. вторичное напряжение трансформатора уравновешивается падения­ми напряжения на дуге и резисторе.

На рис. 3.3, б приведены осциллограммы тока и напряжения для вторичной цепи с учетом следующих ограничений и упрощений.

Напряжение дуги ид от момента зажигания t3 до момента угасания tу считаем постоянным:

ид = Uд,

а в момент зажигания t3 изображаем кратковременным импульсом:

ид = U3.

В интервалах 0-t3 и tу -π дуги нет.

Вторичное напряжение и2 зависит от амплитудного значения U2m и фазы его циклического изменения с частотой ω = 2nf:

и2 = U2m sin ωt.

Сварочный ток i2 = iд, если не учитывать преддуговой ток, получим из (3.1):

i2 =(и2 - ид) /R.

Его кривая имеет вид отрезка синусоиды.

Длительность повторного зажигания t3 можно определить, если счи­тать, что до момента зажигания дуги i2 = 0 и иR = 0, т. е. все напряжение трансформатора приложено к межэлектродному промежутку 2 = ид):

(3.2)

Как видно на рис. 3.3, б, сварочный ток i2 появляется в момент t3 при достижении напряжением и2 значения напряжения повторного за­жигания U3, после чего напряжение дуги устанавливается на постоянном уровне Uд, а ток изменяется по синусоидальному закону до момента уга­сания tУ при снижении и2 до Uд. В следующем интервале длительностью ωtП , начинающимся в момент tУ и заканчивающимся в следующем по­лупериоде при новом зажигании, сварочного тока нет, если не считать незначительного преддугового тока. Во втором полупериоде описанные процессы повторяются. Наличие бестоковой паузы ωtП затрудняет по­вторное зажигание дуги и снижает общую устойчивость процесса. Поэто­му в современной сварочной технологии трансформатор с резистором не используется.

3.1.7. Критерии устойчивости дуги переменного тока

В качестве непосредственного критерия устойчивости можно принять частоту обрывов дуги. Поскольку устойчивость дуги переменного тока определяется надежностью повторного зажигания, то в качестве косвен­ных критериев обычно принимают напряжение U3, ток I3 и время t3 по­вторного зажигания. При испытании трансформатора для их определе­ния записывают начальный участок осциллограмм тока и напряжения (рис. 3.7). Типичные характеристики повторного зажигания при сварке покрытыми стальными электродами следующие. Напряжение повторно­го зажигания U3 = 15-90 В, максимальный преддуговой ток I3 = 2-30 А, время зажигания t3 составляет от 0,1 до 3 мс. Устойчивость повышает­ся с увеличением преддугового тока 13 и снижением напряжения U3 и времени t3.

Рис. 3.7. Начальные участки осциллограмм напряжения и тока дуги (электрод ОЗС-4, 3 мм, 100 А, трансформатор ТДМ-401)

Время повторного зажигания t3, чаще других принимаемое в каче­стве косвенного критерия устойчивости, зависит от параметров дуги и источника. Для цепи с резистором (рис. 3.3,б) время t3 определяется из (3.2). Для цепи с катушкой индуктивности (рис. 3.4,б) необходимо в этом уравнении учесть еще и угол φ сдвига фаз между напряжением и2 и током i2:

Угол φ зависит от величины сопротивления дуги Rд, а также индуктив­ного Xl = ωL и активного R сопротивления в цепи дуги:

Приемы повышения устойчивости проанализируем с помощью урав­нения (3.22). Чем меньше время зажигания, тем меньше охлаждение межэлектродного промежутка и тем вероятней повторное зажигание. Как уже отмечалось, в переходном периоде идут два встречных процесса — охлаждение и нагрев межэлектродного промежутка. Уменьшить t3, т. е. повысить устойчивость, можно либо технологическими приемами — за­медляя охлаждение и деионизацию межэлектродного промежутка, либо электротехническими приемами — ускоряя нагрев благодаря увеличе­нию скорости нарастания напряжения и тока дуги.

Все технологические приемы так или иначе направлены на сниже­ние напряжения зажигания U3. С этой целью для замедления охлажде­ния межэлектродного промежутка увеличивают температуру и массу на­гретых электродов, увеличивают ток, снижают теплопроводность элек­тродов, ограничивают теплоотвод газовыми потоками. Для увеличения эмиссионной способности электродов рекомендуется использовать неплавящиеся электроды с высокой температурой нагрева (вольфрамовые и угольные). Для увеличения ионизации остаточной плазмы вводят лег­ко ионизируемые вещества, содержащие К, Na, Ca, в состав покрытий и флюсов. Снижается напряжение зажигания и при уменьшении длины дуги.

Из электротехнических приемов простейшим является увеличение напряжения трансформатора U2m (или его напряжения холостого хо­да Uх), хотя он связан с ухудшением безопасности труда. Устойчивость повышается и при увеличении частоты f переменного тока. Однако за­метный эффект достигается лишь при увеличении частоты выше 300-500 Гц. Поскольку увеличение частоты связано с существенным услож­нением конструкции источника, такой прием на практике применяется редко. Таким образом, самым эффективным приемом является включе­ние в цепь дуги катушки индуктивности (см. раздел 3.1.4). Устойчивость дуги повышается при увеличении индуктивности L и снижении величи­ны активного сопротивления R в цепи дуги, приводящих к увеличению угла сдвига φ фазы сварочного тока относительно напряжения трансфор­матора. Полезно также последовательное включение конденсатора (см. раздел 3.1.5) или параллельное включение импульсного стабилизатора (см. раздел 3.1.6).

Скорость нарастания проводимости межэлектродного промежут­ка в преддуговом периоде

– это комплексный критерий устойчивости, учитывающий как значе­ния времени t3, так и напряжения U3 и тока 13 повторного зажигания, которые можно получить в эксперименте по начальным участкам осцил­лограмм (рис. 3.7). Единица измерения этого критерия – сименс в се­кунду (См/с = 1/(Ом·с)). Критерий обладает ясным физическим смыслом – понятно, что при высокой скорости восстановления проводимости В3 вы­ше и вероятность повторного зажигания. Так, у электродов с фтористо-кальциевым покрытием, известных низкой устойчивостью горения дуги, В3 = 40-3000 См/с, а у электродов с рутиловым покрытием, предназна­ченных для сварки на переменном токе, В3 = 700-8000 См/с. Обнаружено также, что при сварке покрытыми электродами скорость В3 в полуперио­де прямой полярности в 4-5 раз выше, чем при обратной полярности. По­этому и обрыв дуги переменного тока, как правило, происходит в начале полупериода обратной полярности. По этой же причине сварка вольфра­мовым электродом алюминия, как правило, невозможна без импульсной стабилизации в полупериоде обратной полярности (раздел 6.1.1).

Скорость нарастания тока (di2/dt)3 в интервале повторного зажи­гания также принимают в качестве критерия устойчивости. Ее можно вычислить по осциллограммам (рис. 3.7):

(di2/dt)3 = I3/t3.

Но более эффективно ее экспериментальное определение по осциллографической записи фазовой характеристики di2/dt = f(i2), которая получа­ется, если подать на горизонтальный вход осциллографа сигнал тока i2 с шунта в сварочной цепи, а на вертикальный вход — сигнал di2 /dt c диффе­ренцирующей RС-цепочки, подключенной к этому же шунту (рис. 3.8). Видно, что непосредственно перед переходом тока через нуль наблюда­ется пик скорости, соответствующий резкому спаду тока при угасании di2/dt)У, а после перехода — провал до значения, соответствующего ско­рости нарастания тока (di2/dt)3 в интервале повторного зажигания. Та­кой характер изменения тока при переходе через нуль отмечался ранее на осциллограммах (рис. 3.1 и 3.4). Типичные значения скоростей 15-150 кА/с. Чем выше скорость (di2/dt)3, тем надежней повторное зажи­гание и выше устойчивость процесса сварки. Разработан ряд специфических приемов, направленных на увеличение этой скорости. С этой целью снижают вихревые токи в магнитопроводе и кожухе трансформатора, не допускают насыщения железа магнитопровода. Иногда в цепь дуги включают дроссель насыщения, увеличивающий эту скорость в 2-4 раза и ограничивающий амплитуду тока, так что кривая сварочного тока вме­сто синусоидальной приобретает форму трапецеидальных импульсов. Но самым эффективным приемом увеличения скорости является использо­вание импульсного стабилизатора, подающего на дугу кратковременные импульсы тока после его перехода через нуль.

Для сравнения трансформаторов различной мощности удобно харак­теризовать их не абсолютной, а относительной скоростью

(di2/dt)3/(di2/dt)У,

которую желательно приближать к 1. У большинства сварочных транс­форматоров эта величина находится в интервале 0,3-0,8. Используется также комплексный критерий для оценки трансформаторов

который учитывает полезное влияние на устойчивость как увеличения напряжения холостого хода Ux, так и увеличения скорости (di2/dt)3. У трансформаторов промышленного назначения Fз = 20 – 60 В, у бытовых трансформаторов – 17 – 35 В.

Рис. 3.8. Фазовая характеристика di2/dt = f(i2) (электрод ОЗС-4, 5 мм, 200 А, трансформатор ТДМ-401)