Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейные дифференциальные уравнения второго порядка.doc
Скачиваний:
191
Добавлен:
29.02.2016
Размер:
527.87 Кб
Скачать

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Линейные дифференциальные уравнения второго порядка» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Линейные дифференциальные уравнения

второго порядка с постоянными коэффициентами

  1. Линейные однородные дифференциальные уравнения

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

, (1)

т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и - некоторые числа, а функция задана на некотором интервале .

Если на интервале , то уравнение (1) примет вид

, (2)

и называется линейным однородным. В противном случае уравнение (1) называется линейным неоднородным.

Рассмотрим комплексную функцию

, (3)

где и - действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть , и мнимая часть решения в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.

Решения однородного линейного уравнения обладают свойствами:

Если есть решение уравнения (2), то и функция , где С – произвольная постоянная, также будет решением уравнения (2);

Если и есть решения уравнения (2), то и функция также будет решением уравнения (2);

Если и есть решения уравнения (2), то их линейная комбинация также будет решением уравнения (2), где и – произвольные постоянные.

Функции и называются линейно зависимыми на интервале , если существуют такие числа и , не равные нулю одновременно, что на этом интервале выполняется равенство

. (4)

Если равенство (4) имеет место только тогда, когда и , то функции и называются линейно независимыми на интервале .

Пример 1. Функции и линейно зависимы, так как на всей числовой прямой. В этом примере .

Пример 2. Функции и линейно независимы на любом интервале, т. к. равенство возможно лишь в случае, когда и , и .

  1. Построение общего решения линейного однородного

уравнения

Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и . Линейная комбинация этих решений , где и – произвольные постоянные, и даст общее решение линейного однородного уравнения.

Линейно независимые решения уравнения (2) будем искать в виде

, (5)

где – некоторое число. Тогда , . Подставим эти выражения в уравнение (2):

или .

Так как , то . Таким образом, функция будет решением уравнения (2), если будет удовлетворять уравнению

. (6)

Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.

Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.

Пусть корни и характеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции и . Эти решения линейно независимы, так как равенство может выполняться лишь тогда, когда и , и . Поэтому общее решение уравнения (2) имеет вид

,

где и - произвольные постоянные.

Пример 3. Найти общее решение дифференциального уравнения .

Решение. Характеристическим уравнением для данного дифференциального будет . Решив это квадратное уравнение, найдём его корни и . Функции и являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Комплексным числом называется выражение вида , где и - действительные числа, а называется мнимой единицей. Если , то число называется чисто мнимым. Если же , то число отождествляется с действительным числом .

Число называется действительной частью комплексного числа, а - мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными: , .

Пример 4. Решить квадратное уравнение .

Решение. Дискриминант уравнения . Тогда . Аналогично, . Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.

Пусть корни характеристического уравнения комплексные, т.е. , , где . Решения уравнения (2) можно записать в виде , или , . По формулам Эйлера

, .

Тогда , . Как известно, если комплексная функция является решением линейного однородного уравнения, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции и . Так как равенство

может выполняться только в том случае, если и , то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид

,

где и - произвольные постоянные.

Пример 5. Найти общее решение дифференциального уравнения .

Решение. Уравнение является характеристическим для данного дифференциального. Решим его и получим комплексные корни , . Функции и являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Пусть корни характеристического уравнения действительные и равные, т.е. . Тогда решениями уравнения (2) являются функции и . Эти решения линейно независимы, так как выражение может быть тождественно равным нулю только тогда, когда и . Следовательно, общее решение уравнения (2) имеет вид .

Пример 6. Найти общее решение дифференциального уравнения .

Решение. Характеристическое уравнение имеет равные корни . В этом случае линейно независимыми решениями дифференциального уравнения являются функции и . Общее решение имеет вид .