Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика все.doc
Скачиваний:
177
Добавлен:
28.02.2016
Размер:
513.02 Кб
Скачать

13. Позатабличні випадки ділення і множення

а) множення і ділення, пов'язані з числами 1 і 0, 10 і 100; множення і ділення розрядних чисел на одноцифрове число та множення одноцифро-іюго числа на розрядне число; ділення виду 300 : 20, 600 : 300, 600 : 30; 180

б) множення двоцифрового числа на одноцифрове й одноцифрового нп двоцифрове; множення виду 120 • 3; ділення двоцифрового числа нп одноцифрове та ділення виду 360 : 3;

в) ділення двоцифрових і трицифрових чисел на двоцифрове число при одноцифровій частці способом випробовування (96 : 24; 125 : 25);

г) ділення з остачею (табличні випадки).

Множення і ділення чисел, пов'язаних з числами 1 і 0".

Множення чисел 1 і 0 розкривають на основі поняття дії множення як додавання однакових доданків. Учитель пропонує заміною множення додаванням обчислити вирази: 1 • 3; 1 • 5; 0 • 3; 0 • 6.

Учні бачать, що при множенні 1 на яке-небудь число у добутку отримуємо число, на яке множили 1. При множенні нуля на будь-яке число отримуємо нуль. Ці правила у буквеному вигляді можна записати так:

1 ■ а = а 0 • а = 0

Якщо другий множник дорівнює 1 або 0, то результат не можна знайти додаванням. (Не можна використати і переставляння множників, бо це ноші множина чисел, в якій переставна властивість множення поки ще не розглядалась). Тому випадки множення на 1 і 0 подають як означення.

При множенні будь-якого числа на одиницю у добутку маємо те саме число.

а ■ 1 = а

При множенні будь-якого числа на нуль у добутку отримуємо нуль.

а-0 =

Для з'ясування правила ділення видів 7 : 1 і 6 : 6 треба скористатись зв'язком дій множення і ділення, тобто скласти рівності на ділення з рівності на множення.

1-8 = 8 8:8=1

Що отримуємо в частці від ділення числа на 1? Що отримуємо в частці від ділення числа на самого себе? Наведіть власні вирази на ділення на 1 і ділення числа на самого себе. Поясніть буквені записи кожного з правил:

а : 1 = а а : а = 1

Ділення нуля пояснюють на основі зв'язку дій множення і ділення: 0-4 = 0; 0:4 = 0.

Сформулюємо правило: при діленні нуля на будь-яке число в частці отримуємо

0 : а =

Про неможливість ділення на нуль слід повідомити так: ділити на нуль не можна. Наприклад, не можна 7 поділити на 0, бо немає такого числа, при Множенні якого на 0 отримали б 7.

Ділення виду 80 : 8, 700 : 7".

Бесіда. Множення чисел 10 і 100 можна пояснити, переходячи до десятка иГи> сотні. Розгляньте записи і поясніть розв'язання.

10 • 3 = 30

1 дес. -3 = 3 дес.

Зразок відповіді. Треба 10 помножити на 3. 10 — це 1 дес; 1 дес. помножити нп 3, буде 3 дес, або 30.

Множення і ділення на 10 і 100 вивчають так.

Бесіда. Ми навчилися множити числа 10 і 100. Тому при множенні на 10ь І 100 можна застосувати переставну властивість дії множення. Наприклад: 2-10 = []; 2-10 =10-2; 10-2 = 20.

Отже, 2 ■ 10 = 20.

Отримаємо таке правило: щоб помножити число на 10, треба справа в числі дописати один нуль; щоб помножити на 100, треба справа в числі дописати два пулі.

Виведемо правило ділення на 10 і 100. Складемо з виразів на множення нирази на ділення і порівняємо ділені з частками.

4-10 = 40 7-10 = 70 5-100 = 500 9-100 = 900

40:10 = 4 70:10 = 7 500:100 = 5 900:100 = 9

У записах зліва ділили числа 40 і 70 на 10, отримали відповідно 4 і 7. Справа ділили на 100 числа 500 і 900, отримали 5 і 9. Отже, при діленні на 10 у числі треба відкинути справа один нуль, а при діленні на 100 — два нулі.

Подамо ділення виду 80 : 8, 700 : 7.

80 : 8 = 10

8 дес. : 8 = 8 дес.

Множення і ділення розрядних чисел на одноцифрове число. Множення одноцифрового числа на розрядне число".

. Будемо вчитися множити й ділити розрядні числа (круглі сотні і круглі десятки) на одноцифрове число, тобто розв'язувати приклади виду 30 • 3, 200 • 4, 60 : 3, 900 : 3. Прийом обчислення з'ясовується переходом до десятків і сотень.

1) Розглянути записи, подані у підручнику.

30 • 3 = 90

З дес. -3 = 9 дес.

2) Прокоментувати обчислення виразу: 300 • 2.

2. При множенні одноцифрового числа на розрядне (3 • 200) можна застосовувати переставну властивість множення або спосіб послідовного множення

Два учні по-різному знайшли добуток 3 • 20. Перший учень: 3 • 20 = 20 • 3 = 60. Другий учень: 3 • 20 = 3 • 2 • 10 = 60. Обчисліть 3 • 300 способом послідовного множений.

Тема "Ділення числа на добуток. Ділення виду 80 : 20, 600 : ЗО, 600 : 300".

Бесіда. Обчислимо вираз: 24 : (3 • 2). Застосовуємо правило обчислення виразів з дужками.

24 : (3 • 2) = 24 : 6 = 4 ' ...

Розглянемо інший спосіб ділення числа на добуток двох чисел. 24 : (3 • 2) = (24 : 3) : 2 = 8 : 2 = 4

Яку першу дію виконали? (24 : 3 = 8). Яку другу дію виконали? (Результат першої дії поділили на 2).

Щоб поділити число 24 на добуток чисел 3 і 2, ми поділили спочатку число 24 на 3, а потім результат — число 8 — поділили на 2, отримали число 4. Відповідь та сама, що й при обчисленні першим способом. Прочитайте її підручнику правило ділення числа на добуток.

"Множення і ділення розрядних чисел на одноцифрове число. Множення одноцифрового числа на розрядне число".

2. При множенні одноцифрового числа на розрядне (3 • 200) можна застосовувати переставну властивість множення або спосіб послідовного множення. Прочитайте пояснення за підручником.

Два учні по-різному знайшли добуток 3 • 20. Перший учень: 3 • 20 = 20 • 3 = 60. Другий учень: 3 • 20 = 3 • 2 • 10 = 60. Обчисліть 3 • 300 способом послідовного множений.

Множення суми на число".

(З + 2) • 7 = 35 (кв.) З • 7 + 2 • 7 = 35 (кв.)

Висновок. Щоб помножити суму на число, можна помножити на це число кожний доданок і знайдені добутки додати. '■'

"Множення двоцифрового числа на одноцифрове'

(20 + 1) • 4 = 20 • 4 + 1 • 4 = 80 + 4 = 84.

Спочатку десятки помножили на 4, отримали 80, потім помножили число одиниць, отримали 4, всього 84.

"Множення числа на суму".

Правило множення числа на суму є теоретичною основою множення багатоцифрового числа на дво- і трицифрове числа. Саме тому в пропе­девтичному плані це правило розглядають вже перед множенням одно-цифрового числа на двоцифрове. Ознайомлення розпочинають з розв'язання задачі двома способами.

Перший спосіб: Другий спосіб:

8 • (4 + 3) = 56 (сп.) 8 • 4 + 8 • 3 = 56 (сп.)

Учні констатують, що для розв'язування задачі першим способом треба число 8 помножити на суму чисел 4 і 3. За другим способом число 8 множимо окремо на числа 4 і 3. Відповідь однакова: 56 спортсменів.

Висновок. Щоб помножити число на суму, можна помножити число на кожний доданок, і здобуті результати додати.

"Множення одноцифрового числа на двоцифрове".

На вивчення цієї теми відводяться два уроки. На першому уроці добуток одно- і двоцифрового чисел учні знаходять, застосовуючи переставну властивість множення. На другому уроці вони вчаться застосовувати правило множення числа на суму для знаходження такого добутку. Для пояснення останнього прийому використовують структурний запис:

3

*24

3

• 20 =

= 60

3

•4 =

= 12

60

+ 12

= 72

Спираючись на цей запис обчислення, учні формулюють загальне правило множення одноцифрового числа на двоцифрове.

Тема "Ділення суми на число". Спочатку двома способами розв'яжемо задачу.

Задача. 18 червоних і 12 жовтих слив батько поділив порівну між трьома синами. Скільки слив одержав кожний син ? '■

(18 + 12) : 3 = 10; 18 : 3 + 12 : 3 = 10.

. Розв'язуючи задачу першим способом, треба суму чисел 18 і 12 поділити на 3. За другим способом кожне з чисел 18 і 12 ділимо на 3, а потім додаємо частки. Відповіді однакові.

(18+ 12): 3 == 18:3+ 12 : 3.

Отже, щоб поділити суму на число, можна поділити на це число кожний доданок, і знайдені частки додати.

Тема "Ділення двоцифрового числа на одноцифрове".

Прийом ділення двоцифрового числа на одноцифрове полягає в роз­кладанні числа на зручні доданки із подальшим застосуванням правила ділення суми на число. Учні послідовно розглядають такі випадки ділення: 39 : 3; 72 : 3; 50 : 2.

72 : 3 = 50 : 2 =

= (60 + 12) : 3 = = (40 + 10) : 2 =

= 60 : 3 + 12 : 3 = = 40 : 2 + 10 : 2 =

= 20 + А = 24 . ..■ = 20 + 5 = 25

Тема "Ділення двоцифрового числа на двоцифрове".

Усне ділення двоцифрових і круглих трицифрових чисел на двоцифрове число виконують випробовуванням. Цей спосіб спирається на зв'язок дій ділення і множення та на правило перевірки ділення множенням.

Бесіда. У повсякденному житті нерідко треба знайти частку двох двоцифрових чисел. Наприклад, дізнатися, скільки метрів тканини можна купити, якщо є 36 грн., а ціна 1 м тканини дорівнює 12 грн. Частку від ділення двоцифрового числа на двоцифрове шукають способом випробовування, тобто добирають числа і випробовують їх множенням на дільник.

Наприклад,

4- 64 : 16 = []

16 • 2 = 32 (число 2 не підходить), 16 • 3 = 48 (число 3 не підходить), 16-4 = 64 (отже, 64: 16 = 4).

У цих записах випробовували числа 2, 3 і 4. Число 4 підійшло.

Під час випробовування необов'язково починати з числа 2. Можна прикинути: на яке число треба помножити дільник, щоб отримати ділене. Наприклад, 90 : 15. Тут випробовування можна починати одразу з числа 4, бо числа 2 і 3 не підходять.

Таким самим способом розглядають і випадки ділення трицифрових чисел на двоцифрове число (125 : 25; 105: 15; 128: 16).

Досвід показує, що спосіб випробовування учні засвоюють нелегко. Тому варто більше застосовувати обчислення з коментуванням.

Тема "Ділення з остачею".

Ділення з остачею є підготовкою до письмового ділення. З ним часто доводиться мати справу і в практичній діяльності. Якщо дане число не ділиться без остачі, то треба знайти найбільше з усіх менших чисел, що ділиться без остачі, і поділити його. Здобутий результат і буде часткою (точніше — не­повною часткою). Різниця між даним і меншим числом, що ділиться, становить остачу. Наприклад, 35 не ділиться на 4 без остачі. Найбільше з менших від 35 чисел, що ділиться на 4, є число 32. Поділимо 32 на 4, отримаємо 8. Число 8 — неповна частка. Остача дорівнює різниці чисел 35 — 32, тобто 3.

На ділення з остачею в межах табличного ділення відводять 2 год. На першому уроці перед поясненням ділення з остачею треба показати, що не завжди можна поділити ту чи іншу кількість предметів порівну.

Учитель дає учню 6 паличок і пропонує поділити їх порівну між двома іншими учнями. Потім дає йому 7 паличок і знову пропонує поділити їх порівну між двома товаришами. Одна паличка залишається зайвою.

Далі вчитель дає таке завдання учням всього класу: взяти 14 кружечків і розкласти їх у три ряди порівну. Учні переконуються, що таке завдання не можна виконати: в кожному ряду буде по 4 кружечки, але 2 кружечки залишаться зайвими.

Потім учитель розглядає з ними практичну задачу.

Задача. 20 кольорових олівців дівчинка розклала у склянки по 6 олівців у кожну. Однак 20 не поділилося без остачі на 6. Ще залишилося 2 олівці (мал. 108).

У цьому завданні виконали ділення з остачею. Його записують так:

20 : 6 = 3 (ост. 2).

Число 20 — ділене, 6 — дільник, 3 — частка і 2 — остача.

Запис читають так: 20 поділити на 6, в частці буде 3 і в остачі 2.

На другому уроці1 розглядають спосіб ділення з остачею. Спочатку слід обчислити кілька пар виразів: 27 : 3 і 28 : 3; 15 : 5 і 17 : 5; 36 : 4 і 38 : 4. Після цього необхідно пояснити, що для знаходження частки й остачі треба взяти найбільше з чисел, яке менше від діленого і ділиться без остачі на дільник. Варто домогтися, щоб учні усвідомили, що остача завжди менша від дільника. Всього різних остач на 1 менше від числа, на яке ділимо. Наприклад, при діленні на 5 різних остач може бути 4, а саме: 1, 2, 3 і 4. Бесіду проводять за такими записами:

8:4 = 2 9:4 = 2 (ост. 1) 10 : 4 = 2 (ост. 2) 11:4 = 2 (ост. 3)