
Тема 3. Аксиоматическое построение теории вероятностей План темы
Дискретное вероятностное пространство.
Действия со случайными событиями.
3. Аксиомы теории вероятности.
4. Непрерывное вероятностное пространство.
Развитие теории вероятностей, а также ее приложений в различных областях науки и практики привело к необходимости формально логического обоснования теории вероятностей, Эта задача была решена А.Н. Колмогоровым в начале 30-х годов прошлого столетия. На основании теории множеств и метрической теории функций им впервые была построена аксиоматическая теория вероятностей, которая опирается на ряд исходных факторов, не требующих доказательств (аксиом), а вся остальная теория строится на основании этих понятий с помощью дедуктивного метода. Такой подход превратил теорию вероятностей в точную математическую науку.
Таким образом, при построении теории вероятностей возможны два подхода: математико-статистический и теоретико-множественный. Первый подход был изложен в темах 1-2. Здесь мы рассмотрим теоретико-множественное построение теории вероятностей.
1. Дискретное вероятностное пространство
Введем понятие дискретного пространства элементарных событий. Пусть производится некоторый случайный эксперимент, в результате которого может произойти некоторое множество единственно возможных и несовместных исходов.
Определение. Каждый из единственно возможных и несовместимых исходов случайного эксперимента называется элементарным событием или элементарным исходом.
Обозначаются
элементарные события малой греческой
буквой
с индексом
.
Определение. Совокупность всех элементарных исходов случайного эксперимента называется пространством элементарных событий (исходов).
Обозначают
пространство элементарных событий
большой греческой буквой
.
Определение. Пространство элементарных событий называется дискретным, если множество, составляющих его элементарных исходов конечно или счетно.
Таким образом, дискретными пространствами элементарных событий являются
и
.
Приведем примеры случайных экспериментов и соответствующих им пространств элементарных событий.
Пример. Если проводится случайный эксперимент, состоящий в подбрасывании монеты, то этому эксперименту соответствует дискретное вероятностное пространство, состоящие из двух элементарных событий
,
где
элементарное событие, состоящие в том,
что в результате испытания появится
герб;
элементарное
событие, состоящие в том, что в результате
испытания появится решка.
Пример. Если производится случайный эксперимент, состоящий в подбрасывании игральной кости, то этому эксперименту соответствует дискретное вероятностное пространство, состоящие из шести элементарных событий
,
где
элементарное событие, состоящие в том,
что в результате испытания на верхней
грани игральной кости появится
очков.
Пример. Если производится наблюдение за автоматической линией на некотором предприятии, то соответствующее дискретное вероятностное пространство можно записать в виде
,
где
число
сбоев станков автоматической линии.
Любое событие
в теоретико-множественном построении
теории вероятностей является некоторым
подмножеством элементарных событий
пространства
.
Определение.
Случайным
событием
называют
любое подмножество
пространства элементарных событий,
т.е.
Например, если
производится случайный эксперимент,
состоящий в подбрасывании игральной
кости (см. пример 2), то событие
,
выпавшее количество очков является
четным числом, событие
,
выпавшее количество очков является
нечетным числом, событие
,
выпавшее количество число очков не
превзойдет числа три, являются событиями,
которые соответственно запишутся в
виде:
,
,
.