
- •Альфа- бета- и гамма- распады
- •Альфа-распад
- •Бета-распад
- •Гамма-распад
- •Краткая история открытия [править]
- •Ядерно-физические характеристики [править]
- •Заряд [править]
- •Масса [править]
- •Радиус [править]
- •Моменты ядра [править]
- •Спин [править]
- •Магнитный момент [править]
- •Электрический квадрупольный момент [править]
- •Энергия связи [править]
- •Устойчивость ядер [править]
- •Ядерные силы [править]
- •Уровни ядра [править]
- •Ядерные реакции [править]
- •Радиоактивность [править]
- •Система обозначений ядер [править]
- •Бета-распад
Бета-распад
Перевод
Бета-распад
β-распад,
радиоактивный распад атомного ядра,
сопровождающийся вылетом из ядра
электрона или позитрона. Этот процесс
обусловлен самопроизвольным превращением
одного из нуклонов ядра в нуклон другого
рода, а именно: превращением либо нейтрона
(n) в протон (p), либо протона в нейтрон. В
первом случае из ядра вылетает электрон
(е-)
— происходит так называемый β--распад.
Во втором случае из ядра вылетает
позитрон (е+)
— происходит β+-распад.
Вылетающие при Б.-р. электроны и позитроны
носят общее название бета-частиц.
Взаимные превращения нуклонов
сопровождаются появлением ещё одной
частицы — нейтрино (ν)
в случае β+-распада или антинейтрино --распада.
При β--распаде
число протонов (Z) в ядре увеличивается
на единицу, а число нейтронов уменьшается
на единицу. Массовое число ядра А,равное
общему числу нуклонов в ядре, не меняется,
и ядропродукт представляет собой изобар
исходного ядра, стоящий от него по
соседству справа в периодической системе
элементов. Наоборот, при β+-распаде
число протонов уменьшается на единицу,
а число нейтронов увеличивается на
единицу и образуется изобар, стоящий
по соседству слева от исходного ядра.
Символически оба процесса Б.-р. записываются
в следующем виде:
где —Z
нейтронов.
Простейшим примером (β--распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона ≈ 13мин):
Более сложный пример (β--распада — распад тяжёлого изотопа водорода — трития, состоящего из двух нейтронов (n) и одного протона (p):
Очевидно, что этот процесс сводится к β--распаду связанного (ядерного) нейтрона. В этом случае β-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента — ядро лёгкого изотопа гелия 32Не.
Примером β+-распада может служить распад изотопа углерода 11С по следующей схеме:
Этот процесс можно представить как распад связанного протона
В этом случае ядро углерода превращается в ядро предшествующего ему в периодической таблице элемента — бора.
Превращение
протона в нейтрон внутри ядра может
происходить и в результате захвата
протоном одного из электронов с
электронной оболочки атома. Чаще всего
происходит захват электрона +-распаде,
образуется изобар, стоящий в периодической
системе элементов слева от исходного
ядра. Уравнение К-захвата имеет вид:
После захвата К-электрона на освободившееся место переходят электроны с более высоких оболочек; при этом испускается фотон. Т. о., К-захват сопровождается испусканием характеристического рентгеновского излучения. Примером К-захвата может служить реакция, при которой ядро изотопа бериллия захватывает К-электрон и превращается в ядро лития:
Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов β-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Еβ можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с — скорость света в вакууме. В случае β-распада
где М — массы нейтральных атомов. В случае β+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:
где me — масса электрона.
Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до Eβ т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.
Итак, при β--распаде масса исходного атома превышает массу конечного атома, а при β+-распаде это превышение составляет не менее двух электронных масс.
Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы — нейтрино — спасло не только закон сохранения энергии, но и другой важнейший закон физики — закон сохранения момента количества движения. Поскольку Спины (т. е. собственные моменты) нейтрона и протона равны 1/2, то для сохранения спина в правой части уравнений Б.-р. может находиться лишь нечётное число частиц со спином 1/2. В частности, при β--распаде свободного нейтрона n → p + e- + ν только появление антинейтрино исключает нарушение закона сохранения момента количества движения.
Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к β+-распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к β--распаду — для нейтроноизбыточных изотопов. Известно около 1500 β-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ≥ 102).
Энергия Б.-р. ныне известных изотопов лежит в пределах от
периоды полураспада заключены в широком интервале от 1,3 · 10-2 сек (12N) до Бета-распад 2 1013 лет (природный радиоактивный изотоп 180W).
В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 1012 раз слабее ядерного и в 109 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см.Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (См. Элементарные частицы) (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.
Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра β-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.
Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра β-частиц.
Экспериментальное исследование энергетического распределения электронов, испускаемых β-радиоактивными ядрами (бета-спектра), производится с помощью Бета-спектрометров. Примеры β-спектров приведены на рис. 1 и рис. 2.
Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22—24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.
Е. М. Лейкин.
Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв, на оси ординат — число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).
Бета-спектр RaE (пример β -спектра тяжёлого элемента).