
- •1.Дать определение компл. Чисел и основных понятий. Что называется модулем и аргументом комплексного числа? Геометрическое изображение компл. Чисел.
- •2. Дать определение комплексных чисел. Записать алгебр., тригонометрич., показат., формы комплексных чисел. Как перейти из одной формы записи в другую?
- •3. Вывести формулы сложения, вычитания, умножения, деления комплексных чисел в алгебраич. Форме.
- •4. . Вывести формулы сложения, вычитания, умножения, деления комплексных чисел в тригонометрич. Форме.
- •5. Записать формулу Муавра, формулу извлечения корня из комплексных чисел. Привести примеры.
- •6. Ввести понятие матрицы. Дать основные определения.
- •7. Дать определение линейных операций над матрицами. Произведение матриц. Приведение матриц к ступенчатому виду.
- •8. Дать определение определителей 2-го, 3-го, n-го порядка. Вычисление определителей. Свойства определителей.
- •9. Дать определение матрицы, обратной к данной. Построить матрицу, обратной к данной.
- •10. Раскрыть метод Крамера решения системы линейных уравнений. Привести пример.
- •11. Раскрыть метод Гаусса решения систем линейных уравнений. Привести пример.
- •12. Раскрыть метод решения систем линейных уравнений с помощью обратной матрицы. Привести пример.
- •13. Определить декартовую систему координат в пространстве. Определить координаты точки в декартовой системе координат.
- •14. Дать определение вектора в пространстве. Определить линейные операции над векторами в геометрической и координатной формах.
- •15. Дать определение скалярного произведения векторов. Записать его свойства. Объяснить геометрический смысл скалярного произведения.
- •16. Дать определение скалярного произведения векторов. Вывести формулу скалярного произведения векторов в координатных формах.
- •17. Дать определение векторного произведения векторов. Записать его свойства. Объяснить геометрич. Смысл.
- •18. Дать определение векторного произведения векторов. Вывести формулу векторного произведения векторов в пространстве.
- •19. Дать определение смешанного произведения векторов. Записать свойства. Вывести формулу спв в координатной форме. Объяснить геометрический смысл спв.
- •21. Вывести параметрическое уравнение прямой на плоскости;
- •22. Вывести формулу для нахождения угла между прямыми на плоскости. Перечислить условие параллельности и перпендикулярности двух прямых. Записать формулу расстояния от точки до прямой.
- •23. Дать определение элипса. Записать каноническое уравнение элипса, основные хар-ки. Изобразить на рисунке.
- •24. Дать определение гиперболы. Записать каноническое уравнение гиперболы, основные хар-ки. Изобразить на рисунке.
- •25. Дать определение параболы. Записать каноническое уравнение параболы, основные характеристики. Изобразить на рисунке.
- •26. Вывести уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору. Вывести общее уравнение плоскости.
- •28. Вывести формулу для определения угла между плоскостями. Записать формулу расстояния от точки до плоскости. Описать варианты взаимного расположения двух плоскостей.
- •29. Вывести уравнение прямой пространства, проходящей через заданную точку параллельно заданному вектору (канонические и параметрические уравнения).
- •30. Определить уравнение прямой, как линии пересечения двух плоскостей. Вывести уравнение прямой, проходящей через две заданные точки.
- •31. Дать определение предела функции в точке и на бесконечности. Определить односторонние пределы. Сформулировать свойства пределов функций. Записать замечательные пределы.
- •32. Показать различные способы вычисления пределов функции в точке и на бесконечности.
- •33. Дать определение функции непрерывной в точке и на промежутке. Перечислить свойства функций непрерывных в точке. Дать определение точек разрыва функции. Классифицировать точки разрыва.
- •34. Дать определение производной функции в точке. Сформулировать её геометрический и физический смысл.
- •35. Сформулировать правила дифференцирования. Вывести формулу производной суммы (разности).
- •36. Сформулировать правила дифференцирования. Вывести формулу производной произведения.
- •37. Сформулировать правила дифференцирования. Вывести формулу производной частного.
- •39. Записать таблицу производных элементарных функций. Вывести производные функций:
- •40. Сформулировать правило нахождения производной сложной функции. Записать таблицу производных сложной функции. Сформулировать правило нахождения производной взаимообратных функций
- •42. Дать определение производной высших порядков. Записать правила нахождения производной второго порядка функции заданной параметричнски, функции заданной неявно. Записать формулу Лейбница.
- •43. Дать определение дифференциала функции. Раскрыть его геометрический смысл. Записать таблицу основных дифференциалов, формулы нахождения дифференциала суммы, произведения, частного
- •44. Сформулировать правила Лопиталя, раскрытия неопределённостей Привести пример
- •45. Сформулировать правила Лопиталя, раскрытия неопределённостей вида Привести пример.
- •47.Дать определение экстремума функции. Сформулировать необходимое и достаточное условия экстремума функции.
- •48. Дать определение возрастающих и убывающих функций. Сформулировать условия монотонности.
- •49. Дать определения выпуклости и вогнутости функции, точек перегиба. Сформулировать достаточное условие выпуклости и вогнутости функций. Сформулировать достаточное условие перегиба функции.
- •50. Дать определение асимптоты графика функции. Перечислить виды асимптот. Записать формулы для их нахождения.
- •51. Составить общую схему исследования функции и построения её графика.
- •52. Вывести понятие функции многих переменных, области определения.
- •53. Дать определение предела функции многих переменных в точке. Непрерывность функции многих переменных.
- •55. Дифференцирование сложной функции многих переменных, дифференцирование неявной функции многих переменных.
- •56. Дать определение частных производных высшего порядка.
51. Составить общую схему исследования функции и построения её графика.
Общая схема исследования функции
1. Нахождение области определения функции.2. Исследование функции на четность и нечетность.
3. Установление
области непрерывности функции и
точек разрыва. Отыскание вертикальных
асимптот.4. Исследование поведения
функции при (если
она там определена). Отыскание
горизонтальных и наклонных
асимптот.5. Нахождение экстремумов
и интервалов монотонности функции.
Составление таблицы.6. Нахождение
интервалов выпуклости и вогнутости и
точек перегиба графика функции.7. Нахождение
точек пересечения графика функции с
осями, интервалов знакопостоянства функции.
Составление таблицы. Отыскание
дополнительных точек для построения
графика.8. Построение графика
функции.
52. Вывести понятие функции многих переменных, области определения.
Рассматривается множество .
Если определено правило, по которому
каждой точке
ставится
в соответствие некоторое число
(единственным
образом), то говорят, что на
множестве D определена
(однозначная) функция
.
Как обычно, множество D называется
областью определения функции, а множество
всех соответствующих значений u: Q =
{u}
– множеством значений. Часто
функцию u = F(x)
называют отображением
При n = 2 уравнение F(x,y) = C задает линии уровня поверхности z = F(x,y), а при n = 3 уравнение F(x,y,z) = С – поверхности уровня.
Задание
ФНП может быть неявным: F(x,u)
= 0 или параметрическим .
53. Дать определение предела функции многих переменных в точке. Непрерывность функции многих переменных.
Функция u = f(x) называется непрерывной в точке a, если
f(x) =f(a). |
Обозначим приращения аргументов символами Δx1 = x1 − a1, Δx2 = x2 − a2, …, Δxn = xn − an. Соответствующее приращение функции u=f(x)
Δu = f(a1 + Δx1, a2 + Δx2, … , an + Δxn) − f(a1, a2, … , an). |
функции u=f(x) в точке a, соответствующим прирашению Δx = {Δx1, Δx2, …, Δxn}.
Условие, определяющее непрерывную функцию u = f(x) в точке a эквивалентно условию
Δu = 0. |
Приращение
δxku = f(a1, … , ak + Δxk, … , an) − f(a1, a2, … , an) |
называется частным приращением функции u в точке a, соответствующим приращению Δxk аргумента xk.
Определение 2. Функция u = f(x) = f(x1, x2, … , xn) называется непрерывной в точке a = (a1, a2, … , an) по переменной xk , если
δxku = 0. |
Определение. Величина u называется функцией нескольких независимых переменных (x, y, z, …,t), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u.
Если переменная является функцией от двух переменных х и у, то функциональную зависимость обозначают
z = f (x, y).
Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у.
54. Дать определение частных производных первого порядка функции многих переменных. Геометрический смысл частной производной. Необходимые и достаточные условия дифференцируемости функции многих переменных.
Для функций нескольких переменных вводится понятие частной производной первого порядка, то есть производной функции по одной из переменной при условии, что остальные переменные фиксированы. Например, для функции двух переменных z = f(x, y) рассматриваются частные производные по переменной x и по переменной y. Они обозначаются следующим образом: обозначение частных производных первого порядка |
|
|
геом.смысл Геометрический смысл частных производных: Рассмотрим функцию двух переменных f(x, y) , определенную в некоторой окрестности точки (x0, y0) . Пусть она имеет в этой точке частную производную f'x(x0, y0) = d dx f(x, y0) п п п x = x0 = tg α. Согласно геометрическому смыслу производной функции одной переменной f(x, y0) , α является углом между осью OX и касательной к графику этой функции, т.е. к кривой, определяемой системой уравнений м н о z = f(x, y), y = y0, в точке (x0, y0, z0) , где z0 = f(x0, y0) |
|
необх. и достат. условия... Для того, чтобы функция f(x) была дифференцируема в точке x0 необходимо и достаточно, чтобы у нее существовала производная в этой точке. При этом Δy = f(x0+Δx)-f(x0) = f '(x0)Δx+α(Δx)Δx, где α(Δx) - бесконечно малая функция, при Δx→0. для функции одной переменной существование производной в точке является необходимым и достаточным условием дифференцируемости функции в этой точке. Для функции многих переменных дифференцируемость и существование частных производных не являются эквивалентными свойствами функции.Теорема 6 (необходимое условие дифференцируемости). Если функция дифференцируема в точке , то она имеет в точке частные производные по каждой переменной и . При этом ,, где и – числа из равенства (1). Поэтому условие дифференцируемости (1) можно записать в виде а полный дифференциал функции – в виде Обратная теорема не верна, т.е. существование частных производных не является достаточным условием дифференцируемости функции. |